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ABSTRACT 

Currently, user interfaces displayed to viewers on their TVs look and behave similarly 

for all users. While sometimes it is possible to customise the user interface (UI) to a 

degree, users will rarely experience true customisation on a TV, mainly because that 

is difficult using a remote control or voice commands. Our research focuses on 

utilising machine learning to discover and interpret behavioural patterns and to adapt 

the UI accordingly. In this paper, we will share our solution for a truly adaptive UI, 

tailored to each viewer. This paper also showcases the machine learning engine, and 

examines our behavioural mapping technique and the mathematical theory behind it.  

INTRODUCTION 

After years of researching digital 

television user experience (UX), we 

must accept that there is no simple and 

easy way for the viewer to customise 

the user interface. Even if there were a 

way for the consumer to achieve this, 

we have found a better, more powerful 

solution. What if the software could 

understand and learn what a specific 

viewer wants and adapt accordingly, as 

shown in Figure 1? 

Personalisation of the digital television user interface has been identified as a crucial 

research topic, but most researchers to date have focused on pre-customised UI design and 

standardisation. ‘Joonhwan et al (1)’, ‘Young (2)’. The problem is that a standardised user 

interface will never provide an ideal user experience for each individual in the entire 

viewing/subscribing audience base because the needs and behaviours of each user can be 

vastly different from one another. A preschool child will have a very different mental model 

and thought process from an elderly couple watching TV together, or a young adult for 

example. Recent research in user experience increasingly emphasises viewers’ mental 

models, so the focus is shifted away from designing a solution towards understanding the 

user’s state of mind, and how we, or the service provider, can support those states. ‘Szabo 

(3)’ 

It is obvious that the same user experience will not satisfy all users. This is why we need a 

way to ease customisation. ‘Böhmer and Krüger (4)’. If this is the case, how is it possible 

Figure 1 – AI customised UX 



 

that this problem has not yet been solved? The remote control itself is not ideal for the task. 

There have been suggestions for using gestures, pressure and breath as interaction 

mechanisms ‘Bernhaupt et al (5)’ for interacting with a TV. Voice control seems to be a 

better approach, but it is still not ideal, easy to use or powerful enough. ‘Papp et al (6)’. In 

recent years, user experience research has focused on using machine learning to create 

audience segments or personas. This still implies designing an experience for each persona 

manually, but it is a step in the direction of UI customisation. ’Triolo et al (7)’

THE TELEVISION EXPERIENCE SUCCESS 

For a behaviour to occur, we need a trigger. 

If the trigger is present, we need a certain 

amount of motivation and ability. It has also 

been demonstrated that if the motivation is 

high, the behaviour can occur even at low 

ability values, and vice versa. ’Fogg (8)’ for 

example, if it’s hard for the user to find a 

specific movie, s/he is likely to pick 

something similar which is easier to find, 

unless they strongly desire that specific 

movie. Figure 2 shows the behaviour 

graph, with the activation threshold, above 

which the behaviour occurs. 

Although we can’t measure the user’s motivation directly, we know the information 

architecture. We can assign a numeric value to ‘ability’ based on the user journey (number 

of steps and time elapsed). This information, when used in the behaviour model, can be 

used to calculate the estimated ‘motivation’. 

Ultimately, we are interested in the mental model of the individual user. We need this 

understanding in order to create a user interface where we maximise the user’s ability to 

execute their tasks. For example, if our model suggests that a viewer often spends several 

minutes trying to find movies from the ‘80s and/or action movies, we can reduce this time 

by creating a stripe on the home page of the digital TV application which highlights films in 

these categories by displaying them in top/most prominent positions. We might also set the 

home page background to be an iconic scene from such a movie in order to produce the 

trigger. If this stripe contains movies that can be purchased or rented, then we increase the 

conversion rate of our solution, while also increasing the customer’s satisfaction. 

APPROACH 

In order to create the best possible user experience for user A we record all behaviours. 

This means that we start recording the behaviours of Aβ as an array of behaviours. Aβ = [β1, 

β2, … , βm] behaviours. We define a single behaviour (βx) as a one-dimensional array of 

many individual εx events. So βx = [ε1, ε2 … , εn]. 

This approach led to the topic of the cut-off. In other words, when does one behaviour end, 

and when does the next behaviour start? We could have defined the behavioural tensor as 

Figure 2 – The activation threshold 



 

a single behaviour, constantly adding new events, essentially making Aβ = β1. That approach 

would have been quite detrimental to improving user experience, therefore we had to 

introduce the cut-off. 

Definition 1: The cut-off is an event at which the current behaviour ends and after which a 

new one starts. We defined that cut-off happens at the time when the success of the user 

journey is measurable. 

Success in the user’s journey is when the problem the user initially had is solved. This drive 

for user experience success is essentially why we developed this solution. ’Lichaw (9)’ 

For digital television the problem is the viewer’s need to watch something relevant. We solve 

this by creating a user interface which enables finding and watching video content. Much of 

the time the users will have no clear idea of what they want to watch. This is why traditional 

recommender systems were created ’Adomavicius et al. (10)’, ‘Basu et al (11)’   

One of the breakthroughs in recommendation engine research in 2019 was presented by 

‘Vijayakumar et al (12)’ which employed a heat map of already-visited travel locations to 

create new travel recommendations for consumers, including multiple points of interest. 

That research focused on a domain unrelated to digital TV, but the most important learning 

for us was that departing from a rating-based recommendation system can result in 

significantly improved user experience. 

We have defined cut-off as being when the user chooses to stop watching the selected item 

(movie, series, documentary, etc.). This means that we often need to re-evaluate the 

behaviour if the user resumes watching. Our goal is to create a user experience where the 

user can find an item to watch. So once the item of content is found, if the viewer watches 

it until the end, it means we were successful to a degree. But they don’t necessarily have to 

watch it until the very last frame. Before the automatic cut-off, the user’s actions can dispatch 

the cut-off event. While, for example, pausing the playback will not dispatch such an event, 

navigating away or searching for another item does. 

Definition 2: Any user event with the intent of finding a different item creates a new 

behaviour, and the event chronologically before that will serve as the cut-off for this new 

behaviour. 

Definition 3: The success of the television experience is the numerical representation of how 

successful our solution is in fulfilling the user’s need to find something they want to watch 

while minimising both the amount of time spent before the start of the playback and the 

number of steps needed to reach playback. 

As a result, we have created the television experience success equation, our approach to 

converting a complex user behaviour into a single numeric value. Ωβx is the television 

experience success of the βx behaviour.  

Ω𝛽𝑥
 =  

1

𝑡𝑠
2

 𝐶β 𝑘 ∏ Δε𝑖

𝑛

𝑖=1

  

We want to emphasise the fact that optimising the time needed to find the desired item using 

the interface is crucial for a good user experience. We note the time from the behaviour’s 



 

beginning until the start of the playback as ts. We took 

the inverse of the square of this value because higher 

time taken substantially lowers user experiences. This 

way we avoid the pitfall of generating a very long list of 

recommended items in order to minimise the number 

of steps needed. 

Let Cβ = 1 if the automatic cut-off event triggered after 

1− p ratio of completion of the item. Otherwise if there 

is a user-triggered cut-off, we set Cβ = t
1

s . In other 

words, if the user finds the wrong item, at least they 

should not waste much time. 

So if the user watches the item to a completion ratio 

less than 1 − p, the equation gets simplified into: 

Ωβ𝑥
=

𝑘 ∏ Δ𝜀𝑖

𝑡𝑠
3  

Let ∆εi  represent the ability of the user to complete the εi event. By definition we restrict the 

ability to be in the interval of [0,1], where 0 means failure to complete and abandonment of 

the behaviour. As ability is the least important among the three variables, we introduced the 

k dampening factor, which can be used to dynamically fine-tune the importance of the 

product of event abilities in the equation. 

ADAPTING THE UI TO INDIVIDUAL VIEWERS 

Because our engine is basically a deep network on graph-structured data ‘Henaff et al (13)’, 

we had to find a way to describe the user interface as a graph, ideally a directed graph in 

which any two vertices are connected by exactly one path. Figure 3 is the visual 

representation of a tree graph. We applied the principles of atomic design ‘Frost (14)’ and 

mapped these elements into a JSON ‘Bray (15)’ structure. 

The front-end applications need to build their implementation, and their rendering structure, 

based on the configuration that is loaded when bootstrapping the application. Implementing 

the proposed approach ensures that the application is highly customisable and that the 

configuration is easily modifiable, even programmatically. 

However, this is not enough; the configuration needs to have the possibility to target specific 

groups or specific users. For this purpose we propose a second structure, the target, which 

describes the parameters that need to match those of the front-end app making the request, 

ultimately the user/audience for a configuration. This can be any number of parameters with 

any value and some examples are: device header (brand, model, id, etc.), user profile 

information (age, gender, user-id, profile-id, etc.) or any custom information. 

Figure 3 – The UI graph 



 

THE MACHINE LEARNING ENGINE 

In essence we can formulate our problem 

as a graph generation and regression 

problem. We want to generate a 

configuration that can be represented as 

a graph and we want to find the best 

possible generated graph for the user, 

given their behaviours and additional 

user details. In other words, we have to 

find the best way to combine an algorithm 

that generates tree-structured graphs 

and an algorithm that is able to predict 

which generated graph is the best match 

for the user. We achieve this by 

calculating the television success rate of 

the generated configuration for that 

user’s behaviours. Then we need to find an existing configuration that best matches the 

generated one. As a last step we have to modify existing configuration by merging it together 

with the generated config and the existing behavioural data of the user. 

The core of the machine learning engine, which we implemented for the purpose of this 

paper, is a Deep Generative Adversarial Network (DGAN) ‘Goodfellow et al (16)’ as shown 

in Figure 4. In a DGAN, we have two deep neural networks that compete with each other. 

We have the Generator (G), which we use for generating new graphs, in essence new 

configurations. The other network is the Discriminator (D), which classifies the generated 

graphs as valid or not. The two networks need to be trained together in order for the DGAN 

to work correctly.  

We first decompose the JSON configuration to an adjacency matrix and a feature matrix, 

representing the type of node (page, module, element, etc.) and the sub-type of the node 

(page-type, module-type, element-type, etc.) as one-hot tensors. This process is called 

Encoding and the inverse process we call Decoding. After having our graphs encoded, we 

set up the neural networks D and G. In terms of the model and architecture of the deep 

neural network, this is a straightforward process. (Finding the best architecture of our 

network is subject to further study.) Then we continue by pre-training D to be an optimal 

classifier for the existing pre-created configurations, and a fixed G. Then, we stop the 

training of D and start to train G until D cannot differentiate between real data and generated 

data. This back and forth will lead to an optimal classifier and an optimal G, that can generate 

data very similar to the training set.  

When we have the output from the DGAN, we still face another challenge - choosing the 

best configuration to modify. For the purposes of this section and for simplicity’s sake, we 

treat them as UI designs created by professional UI designers for specific personas. ’Plinio 

et al (17)’ The easiest solution would be to find the configuration closest to the output of the 

ML engine, and then modify that until it matches the output behaviour.  

Figure 4 – The machine learning engine 



 
We also had to match the user’s profile with the persona for which each individual 

configuration was designed by the UI designers. For example, if we have a persona called 

Casey (female 8-12), and we have a UI design created to match her expectations, that 

should be a very good starting point if the user A is a girl, age 9, who also happens to love 

The Grinch. But what if that layout is very far from what our machine learning engine 

outputs? This essentially means solving a system of non-linear equations. To tackle this 

problem, we used an optimised gradient descent algorithm. ‘Ruder (18)’  

Having a generated config, which is already a good one, matched with a pre-defined one 

and having the list of behaviours that the users have done, we need to modify the 

configuration to match the users’ behaviours.  

In the final step we already have a new UI configuration which is ideal for the users’ needs, 

but in a real-world implementation we need to balance user needs with the business goals 

of the broadcaster or TV service provider. Therefore we have created an easy override 

function on top of the solution to make sure anything can be changed or tweaked to match 

these business goals.   

CONCLUSIONS 

We have demonstrated that it’s possible to automatically tailor the digital television user 

interface to the needs each individual viewer. Using our solution as presented in Figure 6, 

we can split the solution into the following main parts: 

• UI - Representing the front-end application that is based on a configuration 

• Configuration engine - Representing the service that is able to create and serve targeted 

configuration 

• Analytics - Representing the engine that is able to save and present the user behaviour 

data 

• Machine Learning - The algorithms that recognise patterns, select and output possible raw 

configurations 

• Config generator - Methods that convert and merge the output of the ML algorithms to 

create actual valid configurations for the app

We have introduced a mathematical formula to describe television experience success. We 

used machine learning to discover the behavioural patterns and predict an ideal UI to 

maximise the viewer experience. With this output, we managed to adapt the pre-created 

configurations to the needs of the individual viewer.  

Overall, we think that machine learning and behavioural analysis will rewrite the rules of 

viewer experience in the next decade. This research constitutes just the beginning of what 

promises to be an exciting field of study. 



 
 

 

Figure 5 – Overview of the solution 
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