

USING MACHINE LEARNING AND BEHAVIOURAL ANALYSIS
FOR USER-TAILORED VIEWER EXPERIENCE

Peter W. Szabo and Zsolt L. Janosi

3 Screen Solutions (3SS), Romania

ABSTRACT

Currently, user interfaces displayed to viewers on their TVs look and behave similarly

for all users. While sometimes it is possible to customise the user interface (UI) to a

degree, users will rarely experience true customisation on a TV, mainly because that

is difficult using a remote control or voice commands. Our research focuses on

utilising machine learning to discover and interpret behavioural patterns and to adapt

the UI accordingly. In this paper, we will share our solution for a truly adaptive UI,

tailored to each viewer. This paper also showcases the machine learning engine, and

examines our behavioural mapping technique and the mathematical theory behind it.

INTRODUCTION

After years of researching digital

television user experience (UX), we

must accept that there is no simple and

easy way for the viewer to customise

the user interface. Even if there were a

way for the consumer to achieve this,

we have found a better, more powerful

solution. What if the software could

understand and learn what a specific

viewer wants and adapt accordingly, as

shown in Figure 1?

Personalisation of the digital television user interface has been identified as a crucial

research topic, but most researchers to date have focused on pre-customised UI design and

standardisation. ‘Joonhwan et al (1)’, ‘Young (2)’. The problem is that a standardised user

interface will never provide an ideal user experience for each individual in the entire

viewing/subscribing audience base because the needs and behaviours of each user can be

vastly different from one another. A preschool child will have a very different mental model

and thought process from an elderly couple watching TV together, or a young adult for

example. Recent research in user experience increasingly emphasises viewers’ mental

models, so the focus is shifted away from designing a solution towards understanding the

user’s state of mind, and how we, or the service provider, can support those states. ‘Szabo

(3)’

It is obvious that the same user experience will not satisfy all users. This is why we need a

way to ease customisation. ‘Böhmer and Krüger (4)’. If this is the case, how is it possible

Figure 1 – AI customised UX

that this problem has not yet been solved? The remote control itself is not ideal for the task.

There have been suggestions for using gestures, pressure and breath as interaction

mechanisms ‘Bernhaupt et al (5)’ for interacting with a TV. Voice control seems to be a

better approach, but it is still not ideal, easy to use or powerful enough. ‘Papp et al (6)’. In

recent years, user experience research has focused on using machine learning to create

audience segments or personas. This still implies designing an experience for each persona

manually, but it is a step in the direction of UI customisation. ’Triolo et al (7)’

THE TELEVISION EXPERIENCE SUCCESS

For a behaviour to occur, we need a trigger.

If the trigger is present, we need a certain

amount of motivation and ability. It has also

been demonstrated that if the motivation is

high, the behaviour can occur even at low

ability values, and vice versa. ’Fogg (8)’ for

example, if it’s hard for the user to find a

specific movie, s/he is likely to pick

something similar which is easier to find,

unless they strongly desire that specific

movie. Figure 2 shows the behaviour

graph, with the activation threshold, above

which the behaviour occurs.

Although we can’t measure the user’s motivation directly, we know the information

architecture. We can assign a numeric value to ‘ability’ based on the user journey (number

of steps and time elapsed). This information, when used in the behaviour model, can be

used to calculate the estimated ‘motivation’.

Ultimately, we are interested in the mental model of the individual user. We need this

understanding in order to create a user interface where we maximise the user’s ability to

execute their tasks. For example, if our model suggests that a viewer often spends several

minutes trying to find movies from the ‘80s and/or action movies, we can reduce this time

by creating a stripe on the home page of the digital TV application which highlights films in

these categories by displaying them in top/most prominent positions. We might also set the

home page background to be an iconic scene from such a movie in order to produce the

trigger. If this stripe contains movies that can be purchased or rented, then we increase the

conversion rate of our solution, while also increasing the customer’s satisfaction.

APPROACH

In order to create the best possible user experience for user A we record all behaviours.

This means that we start recording the behaviours of Aβ as an array of behaviours. Aβ = [β1,

β2, … , βm] behaviours. We define a single behaviour (βx) as a one-dimensional array of

many individual εx events. So βx = [ε1, ε2 … , εn].

This approach led to the topic of the cut-off. In other words, when does one behaviour end,

and when does the next behaviour start? We could have defined the behavioural tensor as

Figure 2 – The activation threshold

a single behaviour, constantly adding new events, essentially making Aβ = β1. That approach

would have been quite detrimental to improving user experience, therefore we had to

introduce the cut-off.

Definition 1: The cut-off is an event at which the current behaviour ends and after which a

new one starts. We defined that cut-off happens at the time when the success of the user

journey is measurable.

Success in the user’s journey is when the problem the user initially had is solved. This drive

for user experience success is essentially why we developed this solution. ’Lichaw (9)’

For digital television the problem is the viewer’s need to watch something relevant. We solve

this by creating a user interface which enables finding and watching video content. Much of

the time the users will have no clear idea of what they want to watch. This is why traditional

recommender systems were created ’Adomavicius et al. (10)’, ‘Basu et al (11)’

One of the breakthroughs in recommendation engine research in 2019 was presented by

‘Vijayakumar et al (12)’ which employed a heat map of already-visited travel locations to

create new travel recommendations for consumers, including multiple points of interest.

That research focused on a domain unrelated to digital TV, but the most important learning

for us was that departing from a rating-based recommendation system can result in

significantly improved user experience.

We have defined cut-off as being when the user chooses to stop watching the selected item

(movie, series, documentary, etc.). This means that we often need to re-evaluate the

behaviour if the user resumes watching. Our goal is to create a user experience where the

user can find an item to watch. So once the item of content is found, if the viewer watches

it until the end, it means we were successful to a degree. But they don’t necessarily have to

watch it until the very last frame. Before the automatic cut-off, the user’s actions can dispatch

the cut-off event. While, for example, pausing the playback will not dispatch such an event,

navigating away or searching for another item does.

Definition 2: Any user event with the intent of finding a different item creates a new

behaviour, and the event chronologically before that will serve as the cut-off for this new

behaviour.

Definition 3: The success of the television experience is the numerical representation of how

successful our solution is in fulfilling the user’s need to find something they want to watch

while minimising both the amount of time spent before the start of the playback and the

number of steps needed to reach playback.

As a result, we have created the television experience success equation, our approach to

converting a complex user behaviour into a single numeric value. Ωβx is the television

experience success of the βx behaviour.

Ω𝛽𝑥
 =

1

𝑡𝑠
2

 𝐶β 𝑘 ∏ Δε𝑖

𝑛

𝑖=1

We want to emphasise the fact that optimising the time needed to find the desired item using

the interface is crucial for a good user experience. We note the time from the behaviour’s

beginning until the start of the playback as ts. We took

the inverse of the square of this value because higher

time taken substantially lowers user experiences. This

way we avoid the pitfall of generating a very long list of

recommended items in order to minimise the number

of steps needed.

Let Cβ = 1 if the automatic cut-off event triggered after

1− p ratio of completion of the item. Otherwise if there

is a user-triggered cut-off, we set Cβ = t
1

s . In other

words, if the user finds the wrong item, at least they

should not waste much time.

So if the user watches the item to a completion ratio

less than 1 − p, the equation gets simplified into:

Ωβ𝑥
=

𝑘 ∏ Δ𝜀𝑖

𝑡𝑠
3

Let ∆εi represent the ability of the user to complete the εi event. By definition we restrict the

ability to be in the interval of [0,1], where 0 means failure to complete and abandonment of

the behaviour. As ability is the least important among the three variables, we introduced the

k dampening factor, which can be used to dynamically fine-tune the importance of the

product of event abilities in the equation.

ADAPTING THE UI TO INDIVIDUAL VIEWERS

Because our engine is basically a deep network on graph-structured data ‘Henaff et al (13)’,

we had to find a way to describe the user interface as a graph, ideally a directed graph in

which any two vertices are connected by exactly one path. Figure 3 is the visual

representation of a tree graph. We applied the principles of atomic design ‘Frost (14)’ and

mapped these elements into a JSON ‘Bray (15)’ structure.

The front-end applications need to build their implementation, and their rendering structure,

based on the configuration that is loaded when bootstrapping the application. Implementing

the proposed approach ensures that the application is highly customisable and that the

configuration is easily modifiable, even programmatically.

However, this is not enough; the configuration needs to have the possibility to target specific

groups or specific users. For this purpose we propose a second structure, the target, which

describes the parameters that need to match those of the front-end app making the request,

ultimately the user/audience for a configuration. This can be any number of parameters with

any value and some examples are: device header (brand, model, id, etc.), user profile

information (age, gender, user-id, profile-id, etc.) or any custom information.

Figure 3 – The UI graph

THE MACHINE LEARNING ENGINE

In essence we can formulate our problem

as a graph generation and regression

problem. We want to generate a

configuration that can be represented as

a graph and we want to find the best

possible generated graph for the user,

given their behaviours and additional

user details. In other words, we have to

find the best way to combine an algorithm

that generates tree-structured graphs

and an algorithm that is able to predict

which generated graph is the best match

for the user. We achieve this by

calculating the television success rate of

the generated configuration for that

user’s behaviours. Then we need to find an existing configuration that best matches the

generated one. As a last step we have to modify existing configuration by merging it together

with the generated config and the existing behavioural data of the user.

The core of the machine learning engine, which we implemented for the purpose of this

paper, is a Deep Generative Adversarial Network (DGAN) ‘Goodfellow et al (16)’ as shown

in Figure 4. In a DGAN, we have two deep neural networks that compete with each other.

We have the Generator (G), which we use for generating new graphs, in essence new

configurations. The other network is the Discriminator (D), which classifies the generated

graphs as valid or not. The two networks need to be trained together in order for the DGAN

to work correctly.

We first decompose the JSON configuration to an adjacency matrix and a feature matrix,

representing the type of node (page, module, element, etc.) and the sub-type of the node

(page-type, module-type, element-type, etc.) as one-hot tensors. This process is called

Encoding and the inverse process we call Decoding. After having our graphs encoded, we

set up the neural networks D and G. In terms of the model and architecture of the deep

neural network, this is a straightforward process. (Finding the best architecture of our

network is subject to further study.) Then we continue by pre-training D to be an optimal

classifier for the existing pre-created configurations, and a fixed G. Then, we stop the

training of D and start to train G until D cannot differentiate between real data and generated

data. This back and forth will lead to an optimal classifier and an optimal G, that can generate

data very similar to the training set.

When we have the output from the DGAN, we still face another challenge - choosing the

best configuration to modify. For the purposes of this section and for simplicity’s sake, we

treat them as UI designs created by professional UI designers for specific personas. ’Plinio

et al (17)’ The easiest solution would be to find the configuration closest to the output of the

ML engine, and then modify that until it matches the output behaviour.

Figure 4 – The machine learning engine

We also had to match the user’s profile with the persona for which each individual

configuration was designed by the UI designers. For example, if we have a persona called

Casey (female 8-12), and we have a UI design created to match her expectations, that

should be a very good starting point if the user A is a girl, age 9, who also happens to love

The Grinch. But what if that layout is very far from what our machine learning engine

outputs? This essentially means solving a system of non-linear equations. To tackle this

problem, we used an optimised gradient descent algorithm. ‘Ruder (18)’

Having a generated config, which is already a good one, matched with a pre-defined one

and having the list of behaviours that the users have done, we need to modify the

configuration to match the users’ behaviours.

In the final step we already have a new UI configuration which is ideal for the users’ needs,

but in a real-world implementation we need to balance user needs with the business goals

of the broadcaster or TV service provider. Therefore we have created an easy override

function on top of the solution to make sure anything can be changed or tweaked to match

these business goals.

CONCLUSIONS

We have demonstrated that it’s possible to automatically tailor the digital television user

interface to the needs each individual viewer. Using our solution as presented in Figure 6,

we can split the solution into the following main parts:

• UI - Representing the front-end application that is based on a configuration

• Configuration engine - Representing the service that is able to create and serve targeted

configuration

• Analytics - Representing the engine that is able to save and present the user behaviour

data

• Machine Learning - The algorithms that recognise patterns, select and output possible raw

configurations

• Config generator - Methods that convert and merge the output of the ML algorithms to

create actual valid configurations for the app

We have introduced a mathematical formula to describe television experience success. We

used machine learning to discover the behavioural patterns and predict an ideal UI to

maximise the viewer experience. With this output, we managed to adapt the pre-created

configurations to the needs of the individual viewer.

Overall, we think that machine learning and behavioural analysis will rewrite the rules of

viewer experience in the next decade. This research constitutes just the beginning of what

promises to be an exciting field of study.

Figure 5 – Overview of the solution

REFERENCES

1. Joonhwan Kim, Younghwan Pan, and Brian McGrath, 2005. Personalization in digital

television: Adaptation of pre-customized ui design.: 2nd European conference on interactive

television: Enhancing the experience (EuroInteractiveTV 2005).

2. Young, I. Mental Models, 2008. Aligning Design Strategy with Human Behavior.

Rosenfeld Media.

3. Szabo, Peter, 2017. User Experience Mapping. Packt Publishing.

4. Böhmer, Matthias and Krüger, Antonio, 2013. A study on icon arrangement by

smartphone users. Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. pp. 2137-2146.

5. Bernhaupt, Regina, et al., 2015. Tv interaction beyond the button press. IFIP Conference

on Human-Computer Interaction. pp. 412-419.

6. Papp, I. I., Saric, Z. M. and Teslic, N. D., 2011. Hands-free voice communication with tv.

IEEE Transactions on Consumer Electronics, Vol. 57, pp. 606–614.

7. Triolo, Cory, et al. 2018. Employing machine learning and artificial intelligence to generate

user profiles based on user interface interactions. 15/610,701 US Patent, December 6,

2018.

8. Fogg, Brian J. 2009. A behavior model for persuasive design. Proceedings of the 4th

international Conference on Persuasive Technology. p. 40.

9. Lichaw, Donna. 2016. The user’s journey: storymapping products that people love.

Rosenfeld Media.

10. Adomavicius, Gediminas and Tuzhilin, Alexander, 2005. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible extensions. IEEE

Transactions on Knowledge & Data Engineering, Vol. 17, pp. 734-749.

11. Basu, Chumki, Hirsh, Haym and Cohen, William, 1998. Recommendation as

classification: Using social and content-based information in recommendation. Aaai/iaai. pp.

714-720.

12. V Vijayakumar, Subramaniyaswamy Vairavasundaram, R Logesh, and A Sivapathi,

2019. Effective knowledge based recommender system for tailored multiple point of interest

recommendation. International Journal of Web Portals (IJWP). Vol. 11, 1, pp. 1–18.

13. Henaff, Mikael, Bruna, Joan and LeCun, Yann, 2016. Deep convolutional networks on

graph-structured data. CoRR, abs/1506.05163, 2015.

14. Frost, Brad 2016. Atomic Design. Brad Frost Web.

15. Bray, T. 2017. The javascript object notation (json) data interchange format. STD 90,

RFC Editor.

16. Goodfellow, Ian, et al. 2014. Generative adversarial nets. Advances in neural information

processing systems, pp. 2672–2680.

17. Filgueiras, Plinio Thomaz Aquino Junior and Lucia Vilela Leite, 2005. User modeling

with personas. Proceedings of the 2005 Latin American conference on Human-computer

interaction. pp. 277–282.

18. Ruder, Sebastian, 2016. An overview of gradient descent optimization algorithms.

CoRR, abs/1609.04747.

