

OMAF4CLOUD: STANDARDS-ENABLED 360° VIDEO
CREATION AS A SERVICE

Yu You, Ari Hourunranta, Emre Aksu

Nokia Technologies, Finland

ABSTRACT

Omnidirectional MediA Format (OMAF) is a media standard for 360°
media content developed by the Moving Picture Experts Group (MPEG).
More complex and tailored multimedia services are needed for advanced
media processing and delivery such as virtual reality content stitching,
packaging, and adaptive streaming. To achieve the desired result, these
complex workflows require many advanced functionalities to work together
on the media content. In order to address the needs of advanced services,
MPEG is also developing a new standard called Network based Media
Processing (NBMP), a standard that aims at increased media processing
efficiency, faster and lower cost deployment of interoperable media
processing functions and the ability to provide large scale deployment by
leveraging the public, private or hybrid cloud services. This paper covers
both OMAF and NBMP standards. Additionally, an end-to-end design and
proof of concept is provided to enable an immersive virtual reality
experience to the end users.

INTRODUCTION

Omnidirectional MediA Format (OMAF) [1] is a systems standard developed by MPEG.
OMAF defines a media format for omnidirectional content with three degrees of freedom
(3DOF) such as 360° video, images, audio and timed text. OMAF also supports viewport-
dependent streaming, where a user’s viewport is transmitted with higher picture quality
than the remaining areas of the viewing sphere. Moreover, the next version of the standard
is under development, enabling standardized features for multiple viewpoints and media
overlays. 

Converting viewport-agnostic 360° video to OMAF compliant content requires file format
and transport protocol level modifications only (e.g. fragmented MP4 and DASH based
streaming). However, adaptive bit-rate (ABR) is needed for real-world use cases, requiring
several encoded versions of the video. Furthermore, 360° videos need to be transcoded to
enable viewport-dependent operation, which puts certain constraints on the video
encoding process. This requires several transcoding instances to run in parallel during
OMAF compliant content creation.

Video processing is a computing resource intensive process. Traditionally content
providers used dedicated in-house hardware to transcode their content. Such an approach
may introduce high capital expenditure related costs and provide limited scalability.

Figure 1 NBMP reference architecture

Network-based solutions are more scalable in terms of the computing resources and
provide remote access to users, for instance, over the web, as well as programmable APIs
for various integration needs.

NETWORK-BASED MEDIA PROCESSING

Multi-Access Edge Computing (MEC) [2] and 5G enables more programmability and
flexibility for the development of new service platforms. Microservices and serverless
architectures use container-based deployments and enable services to be deployed easily
and quickly in the cloud, with the help of flexible software defined networking (SDN). In the
domain of media processing, dynamic or on-demand computing capacity is required in such
architectures. In the meantime, media processing continues to evolve to address ever more
complex tasks and services, ranging from image upscaling to real-time augmented reality,
immersive virtual reality use cases such as VR content stitching, pre-rendering or point
cloud aggregation. Such processing pipelines commonly involve media processing with
advanced algorithms for on-the-fly media conversion or content composition in the network.
In the meantime, as an evolution of cloud computing, MEC enables hosting of independent
entities from centralized data centers down to the network edge, closer to consumers with
reduced latency and high bandwidth requirements for live or real-time media processing.

Multimedia service providers and network/cloud service providers work together to offer
customized immersive services to their customers. Unfortunately, this approach is being
hampered by fragmentation. Multimedia service providers are faced with the challenge of
adapting their services to multiple cloud and network service providers to reach their
customers. These cloud and network service providers often define their own APIs to assign
computing resources to their customers.

The Network-based Media Processing (NBMP) standard has been under development as
ISO/IEC 23090 Part 8 [3]. It is developed to address problems like fragmentation and to
offer a unified standard way to perform media processing on top of any cloud platform.
NBMP defines interfaces, as well as media and metadata formats to facilitate instantiating
any type of media processing. It will be complementary, providing guidance to current
Edge and Cloud computing architectures. Example use cases for the NBMP format include
ingest and egress of timed meta data and auxiliary information towards media processing
functions, enabling complex
media processing such as spatial
content stitching for virtual reality,
or temporal content composition
for customized media
presentations. Another
functionality for NBMP evolves
around network media
processing-based delivery which
reduces network redundancy in
the delivery phase by on-the-fly
conversion in the network. This is
useful for Augmented Reality
(AR) where computer graphics
and natural content are combined, or for user centric presentations where broadcast and

user-related contents are composed in a single presentation. In addition, the immersive
virtual reality media and virtual reality use cases for content stitching, pre-rendering and
point cloud aggregation in the cloud are within scope.

Figure 1 shows the NBMP architecture with the annotations for the specific use case. To
distribute the processing functions efficiently and improve the interoperability and
portability in different cloud solutions, NBMP defines standard APIs and formats such as
Function templates and Workflow Description Document (WDD) consisting of a number of
logic descriptors. A minimal set of RESTful APIs are defined as the control plane to the
workflow manager to build the processing workflows and link function instances, that is,
the tasks together. The manager is the central management entity that provides the actual
data plane finicalities and routes the data traffic to tasks, guided by the input and output
ports defined by the standard. Functions vary from low-level encoders to full-blown ones
like VR stitcher and image upscaler.

There are other workflow or flow-chart languages varying from conceptual business
process modelling such as BPMN [4], to language specific ones such as Apache Airflow
for Python [5], and down to virtual machine management at the infrastructure level such as
Argo for Kubernetes [6] and Mistral for OpenStack [7]. NBMP WDD lies in between the
BPMN and Airflow and connects the input and output ports of media processing functions
into a directed acyclic graph (DAG). NBMP workflow represents the data flow between
functions rather than logic dependencies between functions.

We realized the NBMP workflow by using World Wide Stream (WWS) [8], a stream
processing platform developed by Nokia Bell Labs. It compiles the NBMP WDD into
optimized task description in the JSON format, with appropriate configurations. Optimized
deployment involves system-level concerns, such as deployment and operation resource
cost, computing resource or data storage capacity constraints, or non-functional service
requirements, such as latency, stream quality and reliability. Thanks to the underlying
event brokers and media server for multimedia streams, the actual source streams can be
bound to a task (function instance) dynamically at run-time by the workflow manager. To
handle different types of streams, a RabbitMQ event broker is used to transport structured
streams by Advanced Message Queuing Protocol (AMQP), the standard messaging
protocol, among tasks across the execution entities. For opaque media bitstreams, a
media server is used to support raw YUV bitstreams between tasks directly or indirectly
over the socket connections.

USE CASE: OMAF COMPLIANT VIDEO AND OVERLAY COMPOSITION

Content creation workflow for VR 360° video consists of at least an omnidirectional fish
eye camera, a stitcher to combine the camera inputs to equirectangular or cubemap
projection format, possibly some video editing and postprocessing steps, one or more
video codecs, file format generator and a DASH segmenter. The video format between
postprocessing and transmission blocks may be a mezzanine format, which then needs to
be decoded before encoding to transmission format.

MPEG-DASH is a streaming standard based on ISO Base Media File Format (ISOBMFF).
It is based on media tracks, each encapsulated in randomly accessible ISOBMFF
segments. OMAF adds VR-related metadata to ISOBMFF and to DASH manifest, enabling

players to identify 360° video, but also providing enablers to optimize the 360° video
experience.

Generally, DASH streaming with adaptive bitrate support requires encoding video at
several bitrates, hence typically several video encoder instances are utilized in parallel.
This is also the case with OMAF HEVC-based Viewport Independent profile. However, VR
video requires high resolutions, for example, 4K or more. It is very likely that the
requirements for the encoder may be higher than with traditional video streaming.
Furthermore, OMAF HEVC-based Viewport Dependent profile sets further requirements
for the video encoding, as it expects to have the foreground (viewport) and background
encoded at different qualities and/or resolutions.

Viewport-adaptive operation is a known technique for reducing the needed bandwidth for
360° video, by focusing the bits on the area that the user is watching. However, as the
user has the freedom to turn his head and change the active viewport, the system must be
able to react quickly to provide different areas of the video in high quality. As there is
always some transmission latency, all the areas of 360° video need to be covered with the
appropriate video content, but the quality can be lower than for the viewport area.

The OMAF HEVC-based Viewport
Dependent profile can be realized in
several ways [11]. In this context, we
concentrate only on the Region-Wise
Mixed Resolution (RWMR) scheme. It is
based on encoding video with HEVC
Motion Constrained Tile Sets (MCTS),
where the video picture is divided into
rectangular, independent tiles, enabling
the tiles to be used as subpictures, and
mixing them flexibly in the decoder. The
RWMR scheme allows the tiles outside
the current viewport to have a lower
resolution than the tiles inside the
viewport. This reduces the overall 360°
video resolution, which further reduces
bandwidth and video decoding capacity
requirements. For example, a 4K-capable
video decoder can decode a RWMR video
that provides an effective 6K resolution for
the viewport.

The effective 6K equirectangular scheme,
informatively defined in OMAF Annex D.6.
[1] and in VR-IF guidelines [10], uses four different video resolutions: 6K and 3K resolutions
for the vertically center area, and 3K and 1.5K resolutions for the polar areas. Figure 2
presents tile grids combined in one picture. The pole tiles are always in lower resolution and
hence the player can combine the tiles as illustrated in Figure 3 for one viewing direction.

OMAF specifies the use of extractor tracks to assist in merging subpictures into a single
MCTS bitstream. Consequently, a player [9] only needs to follow the instructions of an

Figure 3 An example tile composition in
player

Figure 2 Tile grids for effective 6K scheme

Figure 4 System building blocks

extractor track to obtain a decodable bitstream from tracks containing MCTSs.

Features under definition for OMAF version 2 include for example overlays and multiple
viewpoints. Video overlays can be either 2D or omnidirectional, and be either
relative/anchored to the viewing sphere or viewport. They do involve quite a lot of new static
metadata, as well as timed metadata tracks. Viewpoints, on the other hand, represent
additional omnidirectional cameras in the scene, enabling the player to switch from one
viewpoint to another, hence multiplying the processing requirements for 360⁰ video
processing.

SYSTEM DESCRIPTION

Our NBMP system prototype is built on top of a generic stream processing platform named
World Wide Stream (WWS) [8]. WWS can ingest, process and deliver large numbers of data
and media streams in both online and offline modes between geographically distributed
sources and sinks. We use WWS as the environment to experiment NBMP functionalities
and as a reference implementation.

Figure 4 shows the building
blocks of the OMAF use case
mapping to current NBMP
architecture. Green blocks are
OMAF specific components that
are end-user facing interfaces.
Users interact with the whole
system through those 2
components. The rest of the
building blocks (blue color) are not
directly visible to the end-users.

The user starts with the OMAF
Web designer, the frontend, and uploads the traditional 360° movie to the Storage via the
Node.JS Server, the backend. Followed by the overlay design stage, the user can edit the
positions and relative depths of the overlays in an intuitive way. The designer utilizes the
Three.JS library [12] for visualization. The actual processing takes place in the NBMP
system after the design is finished. The Node.JS server outputs an NBMP workflow
description document (WDD) and defines itself as a NBMP Sink where the workflow result
is consumed. In addition, we implemented a dashboard UI to receive and monitor the
status of workflows in the system, since media processing typically takes a relatively long
time to complete. A monitoring interface is very useful to track the status of executed tasks
and understand the source of any exceptions, if they occur.

OMAF Workflow Realization

The frontend has a Web user interface covering common video generation operations
such as selecting the input content, specifying video transcoding settings such as ABR
bitrates and tiling scheme, and adding overlays and viewpoint definitions. The frontend is
connected to our Node.JS server via the REST API. Once the user is ready to apply the
settings, either for previewing or final processing, the Node.JS server creates the workflow
description documents (WDDs) by selecting what processing functions to set up based on

user selections. It also converts the user input to workflows and detailed codec, file format,
and/or DASH creation parameters. The generated WDDs are further submitted by the
Node.JS server to the NBMP Workflow Manager to start the actual workflow instances.
The Node.JS and NBMP systems can reside in different locations, e.g. nodes in the cloud.

Figure 5 shows one typical setup of OMAF version 2 content creation with options to have
multiple overlays. It presents a single viewpoint only but the same setup can be applied
and duplicated to multiple viewpoints. The setup includes three ABR variants for the high-
resolution tiles, and two 3K variants with a different tile setup for center and polar areas.
Our design does the HEVC MCTS encoding for full video pictures with a tiling grid, and
then splits the output bitstream to subpictures. Transcoding the overlays is not always
necessary, but in some cases, it may be beneficial to do so, e.g. if the original video has
much larger resolution than required for the overlay. If all the video encoders are run in
separate cloud nodes, a decoder and a down-scaler could be coupled with each encoder,
to avoid high bandwidth raw data transmissions between nodes. The OMAF Creator [9]
takes care of video bitstream post-processing from full pictures to tile-based subpictures,
with extractor track generation. It also creates DASH/ISOBMFF segments, inserting OMAF
specific metadata and creating timed metadata e.g. for initial viewing direction track and
for overlays. It runs as a single instance, since the tracks have file format level
associations, e.g. different viewpoints are grouped in file format level. The operations
under OMAF Creator’s responsibility are much less resource demanding compared to
video decoding and encoding, and hence the single creator should not become an issue
from a load balancing point of view.

Figure 5 Typical setup of an OMAF effective 6K viewport dependent DASH generation with
overlays

Figure 6 One workflow graph deployed

That being said, an NBMP WDD is required to be generated with the information of the input
6K video and single or multiple overlay sources. The Node.JS server acts as the NBMP
Source to generate or update the NBMP WDD files (multiple workflows) and send to the
Workflow Manager by using the REST Workflow API. Inside the WDD, a Processing
Descriptor [3] defines the processing functions and the ConnectionMap object that
represents the workflow graph (see Figure 6). All function information can be found from a
NBMP Function Repository. The repository provides APIs to retrieve NBMP Function

descriptions that contain function implementation (e.g. in the format of Docker [13] container
images). NBMP tasks, instances of functions, run as containers re-scheduled and re-
deployed easily to different cloud hosts. The state of the workflow is the data persisted in the
storage through the workflow edges. To make small updates like changing the positions of
the overlays, the workflow is designed to allow temporal caching to speed up the
processing, as long as the workflow is not killed on purpose.

At the end of the workflow, the Node.JS server again acts as an NBMP Sink and informs the
OMAF players as soon as the workflow produces any output, for instance, the metadata
about the readiness of final media or DASH MPD. Instead of streaming the video content to
the NBMP Sink, the workflow is designed to produce lightweight metadata to the Node.JS
server, the Sink. It is known that this design requires extra support of a shared storage and
may not be ideal for real-time use cases where low latency is critical. Considering the overall
cost of the transcoding, we chose this design in favor of its simplicity and extensibility.

The XZip operation in Figure 6 is a built-in function provided by the system to combine two
or more input streams into a single output. The function synchronizes multiple inputs and
emits an output whenever all of its input streams have produced and signaled at least one
output (e.g. the five inputs in Figure 6).

OMAF Players do not need to be tightly integrated to the pipeline. They only need to know
the URL of the DASH manifest to start the playback. However, to enable efficient content
creation, a preview option is required. We implemented it in two steps. First, the web user
interface can play 360° videos in overlay editing phase, making it easy for the users to
visualize where the overlays are placed. This is implemented using Three.JS library [12].
However, as current HTML5 video players do not support OMAF playback yet, previewing of
the final content is provided via Nokia OMAF Player [9] on Android or Windows platforms.
Further, an integrated mode of the player is made to connect to the Node.JS server and to
listen for indication events on new content becoming available from the NBMP workflows.

SUMMARY

Media processing continues to evolve to become ever more complex and to involve more
tasks and services provided by different vendors. Cloud computing promises a distributed
architecture to offload the processing by scaling the workflows horizontally to multiple
computing entities in the Cloud or 5G Multi-Access Edge facilities. To ease these kinds of
deployments, interfaces between media processing entities in the network should be
defined. NBMP, the standard under development by MPEG (ISO/IEC 23090-8), defines
formats and APIs for good interoperability and portability of processing functions. With the
help of the function discovery API, more complex media processing jobs can be composed
as workflows. Current NBMP workflow is made up with a set of descriptors covering the
media source and meta-data, instructions for media processing, as well as supportive
features like requirements and reporting. NBMP will stick to currently defined standards as
much as possible, enabling re-use of many of the existing tools and content for network-
based media processing.

This paper presents one realization of NBMP in OMAF compatible content creation. A
prototype NBMP workflow implementation for converting traditional 360° videos to OMAF
compliant format is presented to demonstrate a full end-to-end interactive media service
for an immersive user experience. At the time of writing, NBMP, as a standard, has been
under development. Moreover, OMAF v2 standard which introduces VR overlays is also
under development. Our implementation did not take full advantage of the NBMP
standard, for example, the features such as: reporting for status tracking, requirements for
cloud resource management and orchestration with auto-scaling. As a next step, we plan
to conduct some experiments and focus on metrics such as availability and scalability,
reliability and resiliency.

REFERENCES

1. Omnidirectional Media Format (OMAF), ISO/IEC JTC1/SC 29/WG 11 MPEG, ISO/IEC
23090-2, 2019. http://wg11.sc29.org/

2. Multi-access Edge Computing, ETSI ()
3. Network-based Media Processing (Committee Draft), ISO/IEC JTC1/SC 29/WG 11

MPEG, ISO/IEC 23090-8, 2019. http://wg11.sc29.org/
4. Business Process Model and Notation (BPMN) Version 2.0, OMG (Object Management

Group), v2.0, 2011. http://www.bpmn.org/
5. Airflow Workflow Engine, Apache, 2019. https://airflow.apache.org/
6. Argo Container Workflow for Kubernetes, Argo project. https://argoproj.github.io/argo/
7. Mistral for OpenStack, OpenStack Foundation,

https://docs.openstack.org/mistral/latest/
8. World Wide Stream, Nokia Bell Labs, 2019. https://www.worldwidestreams.io/
9. Nokia OMAF Player and Creator source code, Nokia Technologies Github, 2019.

https://github.com/nokiatech/omaf
10. VR-IF Guidelines https://www.vr-if.org/guidelines/
11. M. M. Hannuksela, Y-K. Wang, A. Hourunranta, “An Overview of the OMAF Standard

for 360° Video”, Data Compression Conference 2019, March 2019
12. Three.JS - JavaScript 3D library, https://Three.JS.org
13. Docker technologies, Docker Inc. https://www.docker.com/

http://wg11.sc29.org/
http://wg11.sc29.org/
http://www.bpmn.org/
https://airflow.apache.org/
https://argoproj.github.io/argo/
https://docs.openstack.org/mistral/latest/
https://www.worldwidestreams.io/
https://github.com/nokiatech/omaf
https://www.vr-if.org/guidelines/
https://three.js.org/

