

LEVERAGING CLOUD-BASED PREDICTIVE ANALYTICS TO

STRENGTHEN AUDIENCE ENGAGEMENT
U. Shakeel and M. Limcaco

Amazon Web Services, USA

ABSTRACT
To grow their business and increase their audience, content distributors must
understand the viewing habits and interests of content consumers. This
typically requires solving tough computational problems, such as rapidly
processing vast amounts of raw data from websites, social media, devices,
catalogs, and back-channel sources. Fortunately, today’s content distributors
can take advantage of the scalability, cost effectiveness, and pay-as-you go
model of the cloud to address these challenges.

In this paper, we show content distributors how to use cloud technologies to
build predictive analytic solutions. We examine architectural patterns for
optimizing media delivery, and we discuss how to assess the overall consumer
experience based on representative data sources. Finally, we present concrete
implementations of cloud-based machine learning services and show how to
use the services to profile audience demand, to cue content recommendations,
and to prioritize the delivery of related media.

INTRODUCTION
An abundance of technical advancements has expanded the range of options for media
consumers. Today’s consumers can choose to have 3-D, 4K, HDR, and even 8K content displayed
on a variety of sophisticated devices. Given the public’s appetite for these high-end devices, media
creators are constantly under pressure to increase resolution and quality to compete in an ever-
expanding war of content choices.

In addition to the changes in display technologies, on-demand content and streaming media
delivery have changed the habits of content viewers. Gone are the days when we used to circle
around the TV set at an appointed time for the airing of our favorite TV show. People now expect to
watch the programming they want on their own schedule, which is driving more and more media
companies to consider providing their own OTT (over the top) service. These services use the
Internet for delivery, which introduces potential quality issues that are beyond the control of the
media owner or distributer. To mitigate these risks, many media distributors invest heavily in
solutions that detect playback issues; these solutions require large amounts of computational
capacity to process massive, raw datasets to provide real-time course correction. In this way,
distributors can provide more reliable content that caters to the viewing habits of their audience.

This raises the question of how to build the next generation media delivery platform that not only
delivers reliable content, but also ensures that the content is experienced the way the content
creator intended. One approach is to have the delivery platform predict when events such as
network congestion or low-quality streams will occur in the future, and subsequently guide
consumers in the right direction. Powerful tools toward this goal include using data generated by
consumers from their interaction with content, social media, and multiple screens in conjunction
with predictive modelling, machine learning, and real-time analytics. According to Nielsen, social
media activity drives higher broadcast TV ratings for 48% of shows (1); in a similar survey by
Netflix, over 75% of what people watch is based on Netflix’s recommendations (2).

In terms of audience engagement, there are two basic categories:

• Content experience – Using predictions and analytics on viewers’ viewing habits, player
network logs, and datasets to quickly analyze existing issues or predict future issues. The
predictions can be used to minimize or even eliminate a poor customer experience.

• Content relevance – Using predictions and analytics on historical and some real-time
datasets to detect and recommend relevant content and personalize content and ads,
thereby improving the experience for content selection.

Audience	 Engagement	 Signals	
To build a next generation media delivery platform and deliver a better customer experience,
content distributors can capture, fuse, and synthesize background signals (noise) to create models
to analyze, for both batch and real-time data. We can leverage both transactional data (from user
interactions such as searching, playing, watching/listening, and contacting sales/support) to
behavioral activities (such as sharing, tagging, liking, reviewing the content, and so on) to build a
prediction model. The analysis can be descriptive (aggregation, retrospective), predictive
(statistical, machine learning) or prescriptive (what should we do about it?) based on technology
choices. In the remainder of this paper, we focus on descriptive and predictive analytics, especially
in the context of content relevance.

Machine	 Learning	 for	 Predictive	 Analytics	
Machine learning (ML) is a broad area of tools and techniques that can help us use historical data
to make better business decisions. ML algorithms help us discover patterns in data and construct
predictive models using these patterns, allowing us to use the models to make predictions from
future data. For example, we could use ML to predict whether customers will select a title to view
based on data such as their viewing history, what other users in their same demographic have
watched, and even who they follow on social media platforms. We then can use the predictions to
identify which customers are most likely to respond to personalized, promotional marketing
campaigns.

Benefits	 of	 the	 Cloud	 for	 Predictive	 Analytics	
Cloud Computing platforms are optimal for batch and distributed processing and can be used to
analyze consumers’ interactions. Cloud platforms offer high-volume data processing at scale and
generally at a fraction of the cost compared to traditional data analytics infrastructure solutions. It is
important to understand the scale of such a dataset. For example, as of 2011 Netflix has been
managing 20 billion requests per month for millions of consumers across more than 60
geographies (3). Netflix leverages tens of thousands of Amazon Web Services (AWS) EC2 virtual
instances on demand and terminating the instances when the work is complete.

Analyzing large data sets requires significant compute capacity that can vary in size based on the
amount of input data and the analysis required. This characteristic of big data workloads is ideally
suited to the pay-as-you-go, cloud-computing model, where applications can easily scale up and
down based on demand. This elasticity means that as requirements change, we can easily resize
our environment (horizontally or vertically) on the cloud to meet our needs without having to wait
for additional hardware or over-invest to provision for peak capacity. This scalability is especially
important for mission-critical applications. In contrast, system designers for traditional
infrastructures have no choice but to over-provision because systems must be able to handle
surges in data volumes due to increases in business demand. ML scenarios in particular benefit
from scalable and elastic infrastructure since many ML techniques typically require abundant
compute capacity with the ability for data analysts to iterate and experiment in adaptable ways.

Specifically, as an example of available public cloud computing infrastructure, Amazon Web
Services (AWS) provides media customers with on-demand access to technology services

available across 11 different geographic regions around the world. The overall scalability, elasticity
and global accessibility of platforms such as this make it an extremely good fit for solving big data
problems. Additional details on relevant case studies in this context can be found at (3).

TECHNOLOGY RECAP
The representative technology spectrum in this space
may be categorized into three main areas:

1) Desktop-driven data science tooling (including
Microsoft Excel, KNIME, IBM SPSS Statistics,
RapidMiner, R language and environment,
Weka, MATLAB, and Octave). These services
are typically employed by analysts and
specialists to perform detailed modelling,
simulation and visualization.

2) Server-side big data platforms (several

products within the Hadoop platform such as
Apache Mahout, Spark MLlib, Oxdata,
GraphLab, R+ Hadoop, Radoop, Apache
Hama, Apache Giraph, Apache HBase Kiji, and
BigML). These platform services often serve
as the production-oriented backend to desktop-
driven analysis. This is especially true in cases
where the volume of data to be scored or
assessed exceeds the capacity of a single
client compute node.

3) Scoring/prediction deployment services
(Zementis ADAPA, and Orynx). Using open
standards to articulate prediction models (e.g.,
PMML) can be useful in separating out
modelling and training from execution and assessment. Scoring and prediction engines
can be used to implement the modelling logic expressed as output [PMML] from upstream
machine learning services provided by the previous categories of technology.

Many of these options (Prediction/IO, Mortar, BigML) are also available as on-demand or,
alternatively, as virtual products accessed via cloud marketplace registries.

DEEP DIVE: USE CASE SOLUTIONS
In this section, we focus on the use case for content relevance, and we examine the cloud features
and their value proposition in the light of architectural design patterns.

Content Relevance
Let’s start by looking at how we can generate predictions based on an analysis of historical and
real-time datasets to detect and recommend relevant content as well as to personalize content.

Data sources
One of the key questions is “What data is meaningful for determining content relevance?” The
answer typically is data about user likes/dislikes, user interactions on social media channels, and
users’ viewing habits correlated to user profiling (because they like x, they may like y, and so on).
However, this can result in a very large dataset, both historical as well as real-time, when we
gather data across all consumers of our content. Certain native cloud services, such as Amazon
Kinesis and the highly scalable fleet of virtual machines in the cloud can provide us the means to
ingest very large quantities of data and scale on demand in a highly available and durable fashion.

Figure 1 – Relevant analytics technologies

Figure 2 – Relevant Cloud services (AWS)
Reference (4,5,6,7,8,9)

Additionally, Kinesis provides scalable connectivity to its cloud storage services like the object
storage and archive, which we can leverage for historical data. We can also use these services to
transition real-time data to archives to make the data available for historical analysis.

Social	 media	 	
Today’s gadget-savvy customers are connected to their peers, family, and friends seemingly all the
time, even while they are consuming content. Social media sentiment is an important source of
audience interest. Social media channels like Facebook, Twitter, Instagram, Pinterest, Foursquare,
Tumblr, Google Plus, IMDB, and Flicker are common examples. Most of these social media
channels provide API access (RESTful in some cases) that we can use to get data about near real-
time user behavior. We can then filter the resulting dataset to gather signatures for a specific piece
of content.

Media	 player	 logs	 	
Most video players provide the capability to capture and stream a real-time dataset to a backend
ingestion point. The dataset can contain anything from seek, play, pause, and other player controls
to even the specific bitrate delivered to the customers (in the case of adaptive bitrate). Most off-the-
shelf media players provide this capability; however, many distributors also build their custom
players to include additional data collection and reporting capabilities for interactive experiences
like search, on-the-fly recommendations, camera angle selection, or even shopping experiences,
effectively creating an interactive knowledge dump about the content. Data describing how users
interface with these controls and engagement points can be streamed back to the backend
analytics engines and environments.

Viewing	 history	 	
Viewing history can be captured by the front-end application or the medium that the viewer uses to
navigate and select the content. This data is secured, logged, cleansed, aggregated and archived.
We can then leverage this historical event trail and build recommendations based on user
interactions resulting into both positive (views, downloads) or negative preferences (unsubscribe,
delete).

Approaches	
Once the data has been captured (both historically or streamed in real-time), the challenge is to
make sense of the raw data (from the data sources discussed above). Depending on the turn-
around time required for the underlying application, cloud scalability can be of great advantage to
spin up clusters of hundreds of compute nodes running the analytics engine of our choice in a
matter of minutes.

Sentiment	 analysis	 	
From a technical standpoint, the concept behind sentiment analysis is to process largely
unstructured natural language sources and to extract subjective meaning behind the words being
expressed. It is often used as a means of automatically gauging user interest and community
trending on topics related to events, products, and personalities in the social media space. We can
then apply this understanding in near real-time towards use cases ranging from content
recommendations to digital media ad campaign efficacy.

Analysis in this context involves the application of text processing and machine learning techniques
to classify audience commentary by using a generalized understanding of what is deemed positive
vs. negative sentiment. Natural language processing itself is a challenging subject with numerous
studies dedicated to obtaining high precision in the extraction and understanding of meaning
behind the spoken and written word. This is especially complicated in social media space with

format-limiting colloquial expressions (tweets). The other challenge comes from the large volume
of this content, often streaming from a variety of outlets: tweets, posts, blogs, and movie reviews.

One general technique to
deal with this is the
application of conditional
probabilities as a “bag of
words” concept. That is, a
system is initially trained with
examples of both positive and
negative sentiment, and these
text examples are tokenized
and treated as simple
collections of words. The
system uses this baseline
collection of words and word
frequencies to determine
whether new word collections
are likely examples of either
category. We can use
numerous programming kits
and libraries that implement the “Naïve Bayes” classifier to this effect, such as the Python-based
Natural Language Toolkit (11); however, the goal of performing this operation in near real-time at
high volumes remains a challenge. The proposed approach to this is to perform the learning
process offline with a smaller subset of the overall corpus, and then to apply the trained model
inline in a high-volume stream ingest processing pipeline.

Training the system with different types of sentiment is performed out-of-band from a few thousand
to ideally several hundred thousand samples. Several predefined training sets are generally
available from generic and academic repositories; however, to train using very specific industries it
is desirable to use more specific sources. We may, for example, elect to crowdsource the process
of inspecting a phrase and classifying the intent. One example technology service enabling this is
Amazon Mechanical Turk (14). Herein we find a cloud-based human workflow system that allows
customers to specify tasks up for bid, which then can be executed by a vast global workforce
connected through this service. Customers can programmatically allocate specific classification
tasks with required parameters, process the community feedback, and automate the creation of the
training model data structure using this information. Once the initial model is created (assessed
and fine-tuned), it can then be deployed into a real-time flow. Data sources such as Twitter,
Facebook, and managed data brokers such as Datasift provide interfaces for ingesting large
volumes of social media commentary. Data may be ingested and filtered for specific attributes,
phrases, and sources. The key is to receive and process the data and apply the trained model on
the inbound stream at high velocity. Herein, cloud computing platforms provide very effective
options for collecting and processing large streams of data records in real-time.

In this logical architecture, we receive data through established APIs from social media sources.
We then apply the pre-trained Naïve Bayes Classifier model against the continuously updated
stream of sentiment. The training logic is embedded in simple call-back handlers registered with
the Amazon Kinesis streaming service SDKs such as those found in Apache Kafka, Flume, Storm,
Spark Streaming or the Amazon Kinesis Client Library (KCL) framework. Classifications (positive
or negative) are updated in near real-time against a high-throughput data store such as a NoSQL
system. This data can then be used in several ways: for example, analysts can make timely
queries to inform digital marketing strategists on the efficacy of media efforts to date. Alternatively
media delivery platforms can leverage this data to filter or affect content/video recommendations
as part of an OTT experience. (We discuss recommendations in greater detail in a later section.)

Figure 3: Sentiment analysis on real-time sources

Segment	 audience	
It is often desirable to automatically categorize subgroups contained within a larger audience
population to more readily engage these members with personalized content and targeted
initiatives (i.e., digital marketing campaigns). Machine learning provides several approaches. We
can, for example, use a form of unsupervised learning known as “K-means clustering” to
automatically and recursively identify audience member affinities across an n-dimensional space.
K-means clustering seeks to categorize entities based on a defined similarity measure; the “k”
represents the seeded number of target groups that the system then iterates on and converges
until k-number of segments are discovered. However, when the size of the overall population and
the breadth of user attributes (geo, demographics, viewing behavior, and so on) is large, this can
exceed the capabilities of a desktop toolset such as R or Weka. Here, we can burst into the cloud
and extend the reach of the client toolset by delegating the processing to a scalable backend
machine learning cluster readily capable of processing millions of records. One such example of
this configuration is in the combined R + 0xdata H20 platform. 0xdata provides distributed scale-
out k-means clustering on virtual compute resources and can seamlessly present results back to
an analyst using the R desktop client for visualization and final disposition.

Applications
Based on these approaches, let’s analyze how we can use this normalized data across audience
segments to deliver some real-world applications in the content delivery space.

Recommendations	 and	 interactive	
experiences	 	
Content recommendations are an important
part of overall audience experience. Building
this as a part of any media platform provides
a great opportunity to optimize the overall
user experience and to strengthen overall
engagement. In addition to leveraging
previously learned audience segment
characteristics, a good recommendation
system leverages other audience signals on
an on-going basis to optimize and personalize
the user experience. Such signals include explicit user interactions (the user purchases a movie)
as well as implicit user interactions (the user searches for a genre). We can collect and analyze
these signals on an on-going basis by generating history and observation matrices, and then we
can find similar items and users based on these observations to recommend new items of interest.
Of course, the growing volume of subscribers and content in current and emergent OTT/broadcast
scenarios drives us to consider techniques designed to scale to the large quantity of engagement
signals.

One technique uses a distributed cluster of compute nodes to process high-volume log file inputs
(sourced from players and web service infrastructure) to create "other people also liked these
things" types of recommendations (12). In this example, we use the open source, distributed
machine learning project Apache Mahout to transform historical observations (user-A watched
video-stream-A) to create a co-occurrence matrix that describes what items have been observed
with others (video-stream-A co-occurred with video-stream-B in user-B’s experience). We further
refine this matrix to surface the most interesting co-occurrences using the log-likelihood ratio LLR
measure. This effectively gives us the baseline data structure to calculate item similarity results –
for example, the “items similar to this” in a typical online media or e-Commerce experience (Figure-
4). Very specifically, we can utilize Apache Mahout’s spark-itemsimilarity function to process
source log data stored in a web store like Amazon S3. Using a backend Hadoop cluster to host the
infrastructure, we can process large amounts of historical logs, cleanse and normalize the data,

Figure 4: Finding interesting pairs of items (“co-
occurrences”)

and then pass it into the machine learning pipeline. The Mahout process converts the log data and
presents output results in the form of <item> <appeared with item-1> <item-2> <item-3> and so on.

In processing source
data to compute
recommendations, it’s
also important to
recognize the
distinction between
explicit user
interactions vs. implicit
interactions. In the
former case, users
may make explicit
choices regarding
content they wish to
engage (e.g.,
positively rate a
video); in the latter,
users may express
less formal
preferences through browsing, searching, scanning or other. The special role of implicit user
feedback in calculating content recommendations, and specifically in the case of TV broadcasts, is
described in (15). The required ML techniques to address these cases is articulated in the Apache
Spark MLlib recommendation component based on Alternating Least Squares Matrix Factorization
(16). This capability attempts to estimate a composite product rating matrix (users x content) by
iteratively solving for the two “lower-rank” matrices
of users and products. Given the potential number
of captured audience ratings for an online media
service, where millions of ratings on tens of
thousands of titles may be the norm, this may
prove to be computationally expensive. Platforms
such as Spark MLlib however are designed to
operate in a parallel manner when deployed to
distributed compute platforms such as those
readily provisioned on the cloud.

When the resulting matrix predictions are coupled with a search engine, long with a record of
realtime user interactions, we also can use this data to deliver personalized results (Figure-5). That
is, by caching recent online user activity (clicks, downloads, wish lists, plays) we can generate a
growing list of implicit search criteria that can be supplied to a backend search engine capable of
finding similar items of interest. In this case, the backend search index is supplied with data from
our item similarity data structure from the offline process that we described earlier. We can load
this data structure into an online search engine such as a high-scale Lucene-based platform. By
applying concepts such as TF-IDF (term frequency inverse document frequency), we can execute
continuous searches against our index. This search provides a form of distance measure between
clickstream history vs. a precomputed base of related content. This answers the following
question: “Given the input set of movies I’m interested in, what other movies have been observed
in interesting quantities that match?” Served out of a search engine, the result is a dynamic user
experience that more or less reflects recent and on-going user interaction by providing lists of
targeted content and then, from an end user perspective, adapts content recommendations
accordingly.

Figure 6 - Using user online clicks to search an
item similarity matrix

Figure 5 - Integrated recommendation architecture

users

Media
platforms

Mobile

Search
Play
Buy
Rate

Recommendations

Personalized	 ads	 	
We also can use the preceding approaches of user sentiment analysis and segmentation to deliver
personalized ads. For example, a player requests an ad based on the user profile signature, and
the ad-server returns a personalized ad in the context of a play-back experience to a live scenario,
where the ad-markers can be replaced with a personalized ad on the fly.

Media monetization is often ad-driven, and a personalized, targeted ad has better chances of
eventual conversion. Although the content player can enforce the serving of ads before the actual
content starts playing or in between during the ad-breaks/ad-markers in the stream, it does not
always mean the audience is engaged with the content of the ads. Advertising companies spend a
lot of money coming up with creative, catchy ways of attracting their audiences, but more than that
the ad content has to appeal to,
and be consumed by, the right
audience. We can use content
recommendations across the
player logs to mine ad content
behavior and create signatures
based on different
demographics. These and other
ad tech-related processing
demand requires expansive
compute and storage resources.
Video ad platforms such as
Brightroll achieve this kind of
scale by using cloud services
such as Amazon EMR and
Amazon S3 to manage over 25
billion video ad inventory
requests per month (13). Figure
7 shows a reference
architecture for dynamic ad-
serving.

Content Experience
When we use predictions and analytics on datasets from users’ viewing habits and player or
network logs, we quickly can analyze existing issues or predict future issues. We then can take
actions to minimize or even eliminate a poor customer experience. Distributors like Netflix use
CDN logs, media player logs, and bounce-rate data to build a model of churn detection and
network performance for a particular geography and audience segment. The analysis can be done
in real-time, which leads to real-time actions around CDN switching to provide a better customer
experience (for example, quality in the case of ABR, or less buffering). Additionally, based on the
user viewing habits or recommendations across a segment of users, the content can be pushed to
the appropriate CDN pops to provide a faster streaming experience. In the race to engage
customers with our content, we can win or lose a customer based on the time it takes a player to
start streaming our content after a user selects it. If it takes too long, we risk losing the user to a
competitive channel.

CONCLUSION
Machine learning (ML) tools and techniques can help us strengthen our audience engagement.
The ever-expanding volume, variety, and veracity of audience signal data, however, forces us to
re-evaluate and expand our current approaches. Readily available compute and storage resources
in the cloud allow these ML technologies to perform with unprecedented scale and, in many cases,
improved accuracy. Tooling such as Apache Mahout, SparkMLlib, and Oxdata H20 provide a

Figure 7 – Reference architecture for ad-serving on AWS

broad spectrum of machine learning techniques (such as k-means clustering, collaborative filtering-
based recommendations, and logistic regression), but gain true scale and throughput
improvements when deployed on cloud platforms like AWS. Moreover, cloud-native fully managed
services such as Amazon EMR and Amazon Machine Learning provide even greater ease and
convenience for data science and digital marketing specialists, freeing them from the drudgery of
managing infrastructure. Instead, they can focus on discovering new audience insights and
delivering solutions that strengthen overall engagement.

REFERENCES
1. http://venturebeat.com/2013/08/06/nielsen-tweets-drive-higher-broadcast-tv-ratings-for-

48-of-shows/

2. http://www.pcmag.com/article2/0,2817,2402739,00.asp

3. http://www.slideshare.net/AmazonWebServices/maximizing-audience-engagement-in-
media-delivery-med303-aws-reinvent-2013-28622676

4. http://aws.amazon.com/kinesis/

5. http://aws.amazon.com/s3/

6. http://aws.amazon.com/dynamodb/

7. http://aws.amazon.com/redshift/

8. http://aws.amazon.com/emr/

9. http://aws.amazon.com/ec2/purchasing-options/spot-instances/

10. http://aws.amazon.com/glacier/

11. http://www.nltk.org/_modules/nltk/classify/naivebayes.html

12. https://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html

13. http://aws.amazon.com/solutions/case-studies/brightroll/

14. http://www.mturk.com

15. “Collaborative Filtering for Implicit Feedback Datasets”, available
at http://dx.doi.org/10.1109/ICDM.2008.22

16. https://spark.apache.org/docs/latest/mllib-collaborative-filtering.html

©2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

