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ABSTRACT 

Dense multi-camera setups consisting of hundreds of low-cost cameras 
positioned around a sports arena could provide spectacular look-around 
effects and close-up views using computational photography techniques. In 
addition, the availability of the many viewing angles will allow for detailed 
computer vision and sports analytics. However, a practical difficulty is the 
calibration of these large-scale setups before a match and the challenge of 
keeping the system calibrated (in real-time) during a match. External factors 
such as a cheering crowd, wind, or a passing car can cause mechanical 
vibrations of the small cameras and even the smallest rotation will cause 
errors in rendering or analysis. In this paper, we investigate how to best 
initially calibrate a dense multi camera array and how to keep it calibrated 
while going live. We discuss the software that we developed for robust multi-
camera calibration and calibration monitoring and present experimental 
results for both artificial and real captured data. 

 

INTRODUCTION 

Placing many low-cost cameras around a sports field brings new possibilities for 3D sports 
analysis and immersive viewing. For instance, being able to select the best perspective from 
more than 100 cameras will lead to a better analysis and judgement call for critical moments 
in sports. For the consumer the large number of cameras means that an immersive look-
around effects can be produced using depth image-based rendering. The result can be 
viewed on a smartphone or even on a virtual reality headset for an immersive experience. 
Figure 1 shows a system diagram with algorithms (left) and an experimental outdoor six-
camera setup that we built (right). 



        

 

Figure 1 – Multi-camera system for 3D visualization and analytics (left of figure). Input to the 
system are 𝑁 camera images 𝐼1⋯ , 𝐼𝑁. These are undistorted/rectified and used for pairwise 
disparity/depth estimation. Essential in this process are initial calibration and real-time 
calibration monitoring/control (topics of this paper). Our current experimental setup consists 
of a six-camera array (right side of figure).  

 

The first step is undistortion and rectification. This step remaps camera images such that 
lens distortions are removed and adjacent pairs of cameras form a rectified stereo pair. 
Figure 2 illustrates the process. It is an important step since undistortion and stereo 
rectification allow for accurate real-time disparity estimation. The resulting disparity maps 
encode the depth information and can be used for view synthesis or 3D analysis. In previous 
publications we have shown that for certain camera configurations, disparity estimation and 
view synthesis can be done both accurately and in real-time. We have also presented an 
evaluation methodology for depth estimation and view synthesis [3][4]. However, in the past 
we, and other researchers, have not given sufficient attention to the topic of multi-camera 
calibration. We know that that even the slightest camera orientation changes (e.g. 0.01°) can 
change the parameters of the rectification process such that stereo rectification, disparity 
estimation and view synthesis all fail. For small-scale camera setups where cameras are fix 
mounted close together (e.g. 5cm separation) on a metal bar the approach has often been 
calibrate once using a known calibration pattern and assume that after that nothing will ever 
move. This approach is clearly not sustainable when moving outdoors where cameras are 
no longer mounted close together and a known calibration pattern isn’t practical due to the 
larger scale. 

 

 

 

Disparity
Estimation

𝐼1

𝐼 

𝐼 

𝐼 

 
𝐼𝑁 1

𝐼𝑁

 1 ,   

  ,   

 𝑁 1,  𝑁

Disparity
Estimation

Disparity
Estimation

Undistort
Rectify

Undistort
Rectify

Undistort
Rectify

 

Initial
Calibration

Monitoring/
Control

Rendering/
3D analytics

USB3
cable

trigger
cable

Six-camera array

IDS
camera

5mm
lens



        

 

Figure 2 – Pairwise rectification of cameras for an 8-camera linear array. The rectification 
transforms each image such the optical axes (red arrows) become pairwise parallel (green 
arrows) and orthogonal to the line (dotted) that connects both cameras. The rectification 
allows for easier disparity estimation and depth calculation. 

Accurate multi-camera calibration is therefore essential for the calculation of rectification 
transforms, disparity estimation, 3D view synthesis and the performance of semi-interactive 
3D measurements. In general, one can identify the following calibration problems that 
influence a multi-camera setup: 

1. Per camera intrinsic parameter calibration: This step concerns the estimation of lens 
focal length, lens distortion parameters and sensor principal point. The step can be 
done per camera in the factory or laboratory. The estimated parameters are expected 
to remain stable under intended use. 

2. Per camera colour calibration: The colour properties of cameras can be set per 
individual camera. 

3. Multi-camera photometric calibration: Individual analog to digital conversion gain per 
camera will result in image intensity differences that have a large effect on disparity 
estimation, image synthesis and blending/stitching. Automatic gain control is 
therefore preferably done for all cameras simultaneously in a single control loop. After 
initial calibration, no changes are needed. 

4. Multi-camera extrinsic calibration: Both the synthesis of images for a new virtual 
viewpoint and 3D measurement rely on very accurate knowledge of the relative pose 
of the cameras in the multi-camera setup. The pose consists of three position and 
three orientation parameters. 

5. Multi-camera extrinsic monitoring/control: This step involves the real-time 
measurement of changes in camera positions and orientations given the initially 
calibrated system. Since individual cameras do not change position so much this 
mostly concerns the real-time monitoring and estimation of orientation changes.  

In this paper we focus on extrinsic calibration and monitoring/control (steps 4 and 5) since 
these steps have proven to be the most problematic especially for dense outdoor multi-
camera setups. 

The basic mathematical theory for multi-camera extrinsic calibration already exists for a long 
time [5]. However, less is known about the reliability and robustness in practice. Moreover, 
the real-time monitoring and control in the video case is almost never subject of research 
while this is very relevant for practical setups that capture live events. We have 
experimentally found it to be difficult to produce reliable software that runs in real-time for a 
large-scale (outdoor) setup. The reason for this is likely the overall system complexity since 
multiple image analysis and estimation algorithms are combined resulting in a large number 
of free parameters. Moreover, we notice that some processing steps are very sensitive to 
certain system parameters. 
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The contribution of this paper is to explain how we combine algorithms for feature detection, 
feature point correspondence estimation and bundle adjustment to arrive at a sufficient 
quality and robustness level. We identify key system parameters, their values and introduce 
(visual) monitoring procedures in order to diagnose errors. This makes it possible to quickly 
intervene and restart calibration when needed. In this paper, we present experimental 
results for both photorealistic images and for images that we captured outdoors at the High 
Tech Campus in Eindhoven using our multi-camera setup consisting of six machine vision 
cameras.  

 

MULTI-CAMERA EXTRINSICS CALIBRATION 

Feature detection and correspondence 

It is often not practical to get access to the sports playground. Both the initial calibration and 
calibration monitoring therefore have to rely on detected scene features points. We detect 
feature points in all camera images separately and for each feature point find corresponding 
points in all other camera images. Only points that are present in at least three other views 
are kept. In this manner, the cameras are ‘tied’ together without the hard requirement that 
one feature point is visible in all cameras. 

Bundle adjustment 

Bundle adjustment [5] is the standard approach to simultaneously find camera poses and 
3D positions for the feature points. Various algorithms exist for solving this non-linear 
optimization problem. For dense camera arrays, we noticed that the sensitivity to camera 
position is rather small. We therefore use the camera positions as measured during 
installation with a simple measurement tape. In contrast, the sensitivity to camera orientation 
is typically very high. During bundle adjustment, we therefore solve for the rotation matrices 
and 3D point positions using: 

 

(𝑅1, ⋯ , 𝑅𝑁camera , 𝐱1, ⋯ , 𝐱𝑁point) = arg
𝑅𝑖,𝐱𝑗

min( ∑ ∑ 𝑣𝑖𝑗

𝑁point

𝑗=1

𝑁camera

𝑖=1

‖𝐟(𝑅𝑖, 𝐱𝑗) − 𝐮𝑖𝑗‖ 
) 

 

where 𝐟(𝑅𝑖, 𝐱𝑗) is the predicted image position of 3D world coordinate 𝐱𝑗 of point 𝑗 in camera 

𝑖 using rotation matrix 𝑅𝑖, 𝐮𝑖𝑗 is the image position of point 𝑗 in camera 𝑖 and 𝑣𝑖𝑗 ∈ {0,1} is 1 

if scene point 𝐱𝑗 was either visible or detected in camera 𝑖 and 0 otherwise. To decide 

whether the calibration has succeeded it is important to be able to check the iterative error 
updates of the fitting system. We therefore use the Powell minimization algorithm [6] to 
minimize the above error. While convergence is likely slower than the more optimal 
Levenberg-Marquardt algorithm, the Powell minimization algorithm allows for easier 
intermediate error understanding and visualization. We use Powell with multiple step sizes 
that vary from large to small rotation updates along all axes. The multi-scale rotation steps 



        

are: 0.  °,0.1°,0.01° and 0.001°. The fine rotation steps have the effect that synthesized 
views become sub-pixel aligned. 

MULTI-CAMERA EXTRINSICS MONITORING/CONTROL 

Monitoring the position of stable feature points 

After the initial calibration, external factors such as a moving crowd of people, wind and 
temperature can cause significant orientation changes for one or more cameras. To monitor 
whether each camera is still calibrated we project the stationary 3D scene points 𝐱1,⋯ 𝐱𝑁 
into a reference image for each camera and store the resulting image points 𝐮𝑖,𝑗,ref as 

stationary reference points together with the reference image. Note that we make sure that 
all 3D scene points 𝐱1,⋯ 𝐱𝑁 indeed correspond to stationary points that are either part of 
the fixed infrastructure in the stadium or visible markers mounted for this task. This 
initialization step is typically done semi-supervised (behind the computer) before players 
enter the playing field. During the game, points will become occluded or will not find a match 
in a new frame because of a correspondence estimation error (e.g. due to image noise). To 
exclude these causes for a possible error we estimate the motion of point 𝐮𝑖,𝑗,ref from frame 

𝑡 = 𝑡ref to frame 𝑡 = 𝑡𝑘 and back from the found point position 𝐮𝑖,𝑗,𝑘 at frame 𝑡 = 𝑡𝑘 to frame 

𝑡 = 𝑡ref. If the back estimation comes close enough (within 1 pixel) to the original point and 
both forward and back matches have a sufficiently low match error then we accept the 
estimated correspondence. 

Even when taking the precaution above during the matching process, image noise and 
illumination differences tend to produce incorrect correspondences (Figure 3). To make the 
detection of a miscalibration robust, we ignore large position errors. We first sort all position 
errors for camera 𝑖 in increasing order:  

 

(𝑒𝑖)𝑚=1
𝑀𝑖 ≡ sort (‖𝐮𝑖,𝑗,ref − 𝐮𝑖,𝑗,𝑘‖ ). 

 

We then define the following criterion for detecting a miscalibration for camera 𝑖: 

 

𝑒𝑖 [floor (
𝑃

100
𝑀𝑖)] > 𝑇, 

 

where 𝑃 is the 𝑃-th percentile of all sorted errors [pixel] and 𝑇 [pixel] is a threshold parameter 
for the error that corresponds with the 𝑃-th percentile. We use 𝑃 =   % smallest errors and 
set  𝑇 to a tuneable parameter (typically order of a few pixels). Setting 𝑇 to a small value will 

allow the detection of small calibration errors whereas choosing a larger value for  𝑇 will 
ignore those small calibration errors (e.g. a small vibration caused by light wind). 

The robust approach for detecting a miscalibration has large implications. It means that the 
multi-camera array can be monitored in a robust way. Moreover, the need for re-calibration 
(i.e. re-estimation of camera orientation) can be reduced to cases where there is really a 
problem with one or more of the cameras. In addition, in case we notice that many cameras 



        

show problems at the same time we may conclude that, the mechanical mounting of the 
cameras is wrong and a different mounting approach will be needed in the future. Logging 
the detection results is therefore crucial in order to learn from field experiments. 

 

 

Figure 3 – Feature points in the reference frame (𝑡 = 𝑡ref) denoted with open circles and in a 

next frame (𝑡 = 𝑡𝑘) denoted with closed circles. Reference points are also shown at 𝑡 = 𝑡𝑘. 
Correspondences are indicated with a dotted line. Correspondence can be absent due to 
occlusion (point 4). A false correspondence is still possible (point 5) but robustness to this is 
built in our detection algorithm. Camera rotation errors typically cause all points to change 
position (bottom right of figure). 

Updating camera orientation estimates 

Once we detect that a camera is no longer calibrated, we need to re-estimate the camera 
orientation parameters. Since the orientation estimation must be done in real-time for 
potentially all cameras, we use the efficient non-iterative Kabsch algorithm [7] to estimate 
the rotation matrix for the deviating cameras. Due to its efficiency for rotation estimation, 
The Kabsch algorithm is still used today in robotics [8]. The known scene points 𝐱𝑗 that 

resulted from the bundle adjustment step can be used to calculate a 3D reference 
configuration of scene points. Under the assumption that a camera has only changed 
orientation and not position, the distances from the cameras to these scene points must not 
change. (Only the 2D position of projected image points change when a camera rotates). 
Using this assumption, we can compute and store reference ranges 𝑟𝑗,ref from all cameras 

to all scene points 𝑗 at the initialization stage. Using these reference ranges, we calculate 
the 3D camera coordinates of scene points for all cameras 𝑖: 

 

𝑧c,𝑗 =
𝑓𝑟𝑗,ref

√𝑢𝑗
2+𝑣𝑗

2+𝑓2
  𝑥c,𝑗 =

𝑢𝑗
2𝑧c,𝑗

𝑓
  𝑦c,𝑗 =

𝑣𝑗
2𝑧c,𝑗

𝑓
 

 

where 𝑓 is the focal length [pixel] and 𝑢𝑗 , 𝑣𝑗 are the image coordinates of point 𝑗 [pixel]. This 

gives calibration points in both world space and camera space. Using the Kabsch algorithm, 
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we now estimate the optical rotation matrix. Note that this algorithm has a complexity that is 
quadratic in the number of feature points per image. Since we already required high-quality 
feature point correspondences, the number of feature points will typically be rather small 
(e.g. maximally 50). The required number of computations is therefore limited. The Kabsch 
algorithm has the advantage that it is a direct method and can therefore efficiently solve for 
large rotation errors. In contrast, the stepwise, iterative, Powell minimization method would 
require many updates to converge. The downside of using Kabsch is that it does not 
minimize a re-projection error in image space but a 3D distance error instead and hence 
relies more heavily on the accuracy of the 3D point estimates. As a result, the rotation 
estimate will be less accurate. To remove the remaining bias we can use Kabsch only as 
first estimate that we can then further refine using the original re-projection error for a fixed 
number of small rotation updates. 

 

EXPERIMENTAL RESULTS 

Photorealistic image simulation is an indispensable tool when it comes to verification of 
algorithms and software. For instance, with artificial cameras it is possible to simulate an 
orientation disturbance in one of the cameras and investigate whether calibration monitoring 
and control is able to recover from this error. 

Eight camera linear array using photorealistic simulations 

A soccer stadium with players was acquired from the Unity Asset Store [1]. The 3D 
photorealistic rendering package Blender [2] was used to create images of an empty stadium 
and a stadium with players. Images were synthesized for a camera array consisting of eight 
cameras, spaced 1m apart. To test the initial calibration process, each camera was 
randomly rotated with a rotation between 0 and 2 degrees. Figure 4 shows bundle 
adjustment results for the first iteration (top row) and for the final iteration (bottom row) for 
cameras 1, 2 and 8. As can be seen, the projected 3D scene points (red dots) in general 
end up at the detected image position (green circle). Note that some outliers are still visible 
in the final iteration but excluded during the fitting process. 

 

 

 

 



        

 

Figure 4 – Bundle adjustment visualizations for cameras 1, 2 and 8 for the first iteration (top 
row) and the final iteration (bottom row) for an empty soccer stadium. The red points are the 
re-projected 3D scene points into each image given the current estimates of the parameters: 
𝑅1, ⋯ , 𝑅𝑁camera , 𝐱1, ⋯ , 𝐱𝑁point. Green circles are the original image feature points. The red 

lines connect the re-projected points with the original feature points. 

 

To further validate estimated rotation parameters, we used the eight reference images to 
synthesize a perfectly aligned camera array. Results are shown in Figure 5. When 
comparing the image position of the soccer goal it can be seen that for the synthesized 
images (bottom row) its position is correctly aligned. 

 

 

Figure 5 – Eight virtual cameras were synthesized (only three are shown) all pointing in the 
same direction. The top row shows the original non-rectified camera images. The bottom row 
shows the synthesis results for cameras 1, 5 and 8. The soccer goal (yellow circle) is now 
vertically aligned (red line) in all camera views. 

 

To test calibration monitoring, an artificial rotation error of 0.5 degree magnitude was 
introduced in the second frame after the reference frame in the image sequence for one of 
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the cameras. The effect of calibration monitoring for this situation is shown in Figure 6. 
Images in the first and second row of Figure 6 show that most reference points are matched 
with a corresponding new point in a new frame and that if they do, the position remains 
stable. However, in the third row of Figure 6 it can be seen that for camera 2 that all points 
have shifted position. We can conclude that the error is (also visually in the plot) easily 
detected.  

 

 

Figure 6 – Calibration monitoring results for simulated camera images. The 3D scene points 
are first projected in the reference frame (top row). Calibration status is judged correct when 
a given fraction of corresponding feature points (green circle) do not change position (middle 
row). When camera 2 is rotated on purpose 0.5 degree this is detected since all feature points 
now change position (bottom row).  

 

Six camera linear array: outdoor capture 

For the outdoor experimental setup, we validated the entire extrinsic calibration process: 
feature detection, feature correspondence estimation, bundle adjustment, orientation 
estimation, stereo rectification and view synthesis. Figure 7 compares raw input images with 
images after the final view synthesis where virtual views all point in the same direction.  
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Figure 7 – Comparison of original non-rectified camera images with synthesized images 
where the virtual views for the six cameras (only four are shown) all point in the same direction. 
The top row shows the original non-rectified camera images. The bottom row shows the 
synthesis results for cameras 1, 2, 5 and 6. After view synthesis, the light-blue object becomes 
vertically aligned (red line) in all camera views. This is a practical verification that all steps 
(feature detection, bundle adjustment, rectification, and view synthesis) were successful. 

 

CONCLUSIONS 

Moving from a laboratory-scale rigidly-mounted multi-camera array to a large-scale multi-
camera outdoor setup with distances between cameras increasing by a factor of 20 (from 
6cm baseline to over 1m baseline) has proven to be extremely difficult. We have found that 
these problems were mainly due to the intricate dependence of depth estimation and view 
synthesis on the success of multiple calibration steps (both photometric and geometric). We 
have identified robust approaches for the most important calibration steps and presented 
robust ways to calibrate a multi-camera array, monitor its status and re-calibrate when 
needed. 

Not all problems will have been solved. While results for an experimental outdoor setup of 
six parallel cameras look encouraging, we expect new problems to arrive when we further 
scale up to more than 50 cameras and those camera will be spatially organised in new 
configurations (e.g. multiple sides of a sports field). 
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