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ABSTRACT 

The current technological development trend in AI suggests that it will be a 
pervasive end-to-end component in all future media systems from 
production to distribution and considered as one of the “new normals” of a 
typical media production infrastructure of the near future. In this context, key 
assets of main European and world broadcasters are represented by the 
immense (and growing) number of archived objects, that together with their 
relevant metadata are seen by all major technology providers as a ground 
truth treasure. But how much is this belief true? Is it really so advantageous 
to consider archive metadata as an easy-to-use source of ground truth for 
machine learning tools? This paper will present the main challenges behind 
this approach and how these could be addressed by applying a rigorous 
and structured approach at what can be identified as a new process: dataset 
production. By defining and following key requirements for the dataset 
production process, the paper will illustrate some basic tools enabling 
decision taking about the effectiveness of the possible alternatives (e.g., 
metadata adaptation vs. metadata re-make) and will propose a theoretical 
background for the generation of future-proof datasets. 

 

INTRODUCTION 

In the current era the usage of Artificial Intelligence (AI) technologies in industrial processes 

is becoming commonplace in many sectors including finance, manufacturing, automotive 

and – of course – media and entertainment. The applications range is extremely wide and 

goes from business data analytics to automated quality control, web & social mining, 

multimedia classification, automated driving and many more  (6)(7). The level of penetration 

of AI tools in production processes is evolving from a simple support to business decisions 

to full-fledged substitution of human decision makers. If on the one side this scenario poses 

unprecedented challenges in terms of ethics, labour policy, safety and liability, on the other 

side represents an unmissable opportunity to implement new areas of business otherwise 

unfeasible. The media sector is certainly one in which the potential of AI technologies may 

give its best results, and probably one in which risks related to the application of AI in the 

value chain can be better-mitigated w.r.t. other critical sectors (e.g., healthcare, finance, 

automotive) due to its inherent nature. There is also another key enabling factor in the media 



        

   

 

domain, namely the availability of an alleged immense amount of data. However, how much 

of this data is actually usable, through what processes, and at what cost? This paper tries 

to elaborate on this problem, based on the observations and experiences of the past 20+ 

years in applied R&D in the field of AI in media processes (especially in archives). 

AI AND ARCHIVES: A LONG STORY 

The application of AI in the realm of broadcast and media archives dates back more than 
two decades by now. First European R&D collaborative projects around this topic had been 
launched since the late nineties and counted automation of archive documentation among 
their strategic objectives12. Until the recent past, the classical approach has been to use 
available technologies and tools trained externally to annotate content, with few examples 
exploiting available documentation to train AI models. This last approach has been 
revitalised in recent years due to the explosion of advanced machine learning approaches 
based on deep neural networks, becoming affordable thanks to the increase of computation 
power density and stable integration of GPU technologies as part of the development stack 
(8). These modern approaches need considerable amount of data to work properly: in fact, 
different from legacy machine learning, they converge on the extraction of the most 
promising features through iterative learning rather than working on features engineered in 
advance. For popular applications in the media domain like image/video classification, 
technology providers see the availability of archive documentation as a source of unlimited 
(and typically low-cost) ground truth. 

Ground Truth Generation is a Multi-faceted Problem 

Many tasks which can benefit from AI support are characterised by a common pattern, 
namely that of extracting one or more information elements from the automated analysis of 
content. Information elements are part of a description model, which represents the way in 

which content is described according to the conceptual scheme characterising each specific 
domain. Information elements are normally used in some business processes to make 

 

1 https://cordis.europa.eu/project/id/FP4_24956/it 
2 https://cordis.europa.eu/project/id/IST-1999-20013 

https://cordis.europa.eu/project/id/FP4_24956/it
https://cordis.europa.eu/project/id/IST-1999-20013


        

   

 

decisions (  

Figure 1).  

In order to work as expected, a tool performing the mentioned analysis must be trained to 

identify and extract the target information elements through learning by certified examples 

of the association of such elements with certain content items (a.k.a. ground truth). 

Instances of such associations are given the name of datasets in the machine learning 

jargon. Since datasets for real-life tasks are scarce and expensive to produce, a common 

idea to solve this problem is to exploit available archive documentation as a source of ground 

truth and hence of datasets. However, if this approach may have proved successful when 

remaining in the 

same domain 

(e.g. train on 

archive data to 

extract archive-

related 

information 

elements), the 

cross-domain 

generalisation 

remains an 

unsolved 

problem.  As an 

example, 

consider the way 

in which the 

same movie is classified in different databases (Figure 2). The three exemplified platforms 

respond to three different business cases, characterised by different business processes 

and decisions, and different kinds of users, hence the need to use different description 
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Figure 1. Information elements as inputs to business processes. 
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models. In such a scenario, an approach that trains AI tools on one domains’ data has low 

likelihood of producing useful information in the others. In the specific case, a process 

trained on archive data (c) aimed at producing information elements useful for the OTT 

platform (a) would need that a thorough (and lossy) adaptation of description models is 

performed beforehand. 

 

  

(a) (b) 

 

(c) 

Figure 2. Different annotations for the same movie: (a) from Rai Play; (b) from IMDB; (c) 
from RAI’s archive catalogue. 

We can therefore come to a first finding, i.e. that the relevance of information elements for 
a certain decisional task in a business process depends on the business domain, which 
means – ultimately – on the users taking part in the decision process. In the archive domain, 
the documentalists annotate content according to a well-defined description model, which 



        

   

 

contains elements pertaining to decisions taken by users of the archives (e.g. whether or 
not the archived piece is useful for a new production, or whether appropriate rights are 
owned, or whether the media asset is of sufficient quality). In the OTT publishing domain 
editors annotate content according to a different description model, which contains elements 
helping final users take decisions about their interest for a programme. Although a full 
characterisation of the different description models is out of scope of this paper, for the sake 
of this discussion we can consider that description models can be represented along a three-
dimensional space as depicted in Figure 3. 

 

 

Figure 3. Description models representation. 

Each user category corresponds to a bidimensional map and in each map, level and depth 
account respectively for the kind of information and the amount of detail for that kind. An 
example of a general depth/level map is depicted in Figure 4. Under such a simplified 
hypothesis, we could argue that each domain corresponds to a subset of the general 
depth/level map and subsets can have partial overlaps. Thus, the Archive description model 
can e.g. share part of the Stories sub-model with the Publisher description model and the 
Customer description model can share part of the Real World level with the Publisher. This 
establishes “information flows” across domains that, in principle, enable maximising cross-
domain reuse of available data.  



        

   

 

 

Figure 4. A possible general description model breakdown in depth/level. 

However, do commonalities at the description model level ensure reuse of data for AI in the 
form of datasets? Let us also consider that business domain mismatch is not the only issue 
related to an archive-centred approach for ground truth generation. In fact, especially for 
broadcasters having deep archives other important issues are: 1) documentation data is 
stratified over many decades and compliant to different description models evolving over 
time; 2) long to mid-term variations of documentation budget can influence the depth and 
detail of annotation as well, resulting in heterogeneous data even for the same content 
genre; 3) different documentalists (users) may interpret and apply annotation criteria 
differently; 4) finally yet importantly, even in the case in which Information Elements are 
shared among business domains, they can be instantiated following different criteria3.  

DATASET PRODUCTION FUNDAMENTALS 

The above discussion challenges basic criteria of machine learning that put homogeneity 
and statistical representativeness of data as key for proper functioning, so that any AI 
machinery targeted at extracting information elements in a real media environment must be 
designed according to the above fundamental findings. At the core of this design, there is a 
fundamental activity, that we can call dataset production. 

Summarising, we can say that: 1) dataset production must comply to a business process – 
driven description model and is equivalent to the generation of information elements by the 
actors (users) of the business domain; 2) the way in which information elements are 
generated depend on the users, their context and modality of observation, and on other 
factors generally affecting their cognitive processes (e.g., attention, memory, culture) (See 
also (1)). In the remainder of this Section, we will formalise these concepts. 

 

3 Following the example depicted in Figure 2, IMDB’s annotations for credits include names of actors appearing 
on the screen of Cinema Paradiso (e.g., Jean Gabin), while this information is not present in either of the other 
two cases. 



        

   

 

Tensor-like Representation of Datasets 

Let 𝐵𝐷 = {𝐵𝐷1, 𝐵𝐷2, … 𝐵𝐷𝑁} be the set of N Business Domains and 𝑈 = {𝑈1, 𝑈2, … 𝑈𝑁} the 
set of corresponding user classes, so that we denote with 𝑈𝑖 the user class of 𝐵𝐷𝑖. Let 𝐷𝑀 =
{𝐷𝑀1, 𝐷𝑀2, … 𝐷𝑀𝑁} be the set of description models for each Business Domain. We have 

that 𝐷𝑀𝑖 = {𝐼𝐸𝑖1, 𝐼𝐸𝑖2, … 𝐼𝐸𝑖𝐾𝑖
}, where 𝐼𝐸𝑖𝑘 is the k-th Information Element of the description 

model 𝐷𝑀𝑖. We can assume, as already anticipated, that description models may overlap, 
i.e. that ∃𝑝, 𝑞: 𝐷𝑀𝑝 ∩ 𝐷𝑀𝑞 ≠ ∅. An Information Element can be e.g. uniquely identified 

through the specification of the URN of a metadata schema and of a set of criteria 

(annotation rules) 𝐴𝑅𝑖 = {𝑅𝑖1, 𝑅𝑖2, … 𝑅𝑖𝐾𝑖
} for the creation of data instances. Let us also 

denote with 𝐸𝑥𝑡(𝐼𝐸𝑖𝑘) a generic set of instances of 𝐼𝐸𝑖𝑘 generated according to these rules. 

Let M be the set of media items of interest, which is shared among the Business Domains.  

The dataset production process in each domain 𝐷𝑀𝑖 can then be denoted as a process 
function 𝐷𝑃𝑖 executed by a user 𝑢𝑗 ∈ 𝑈𝑖 that takes M as input set and produces for each 

media item 𝑚𝑘 the set of instances 𝐸𝑥𝑡(𝐷𝑀𝑖)
𝑗𝑘 = {𝐸𝑥𝑡(𝐼𝐸𝑖1), 𝐸𝑥𝑡(𝐼𝐸𝑖2), … , 𝐸𝑥𝑡(𝐼𝐸𝑖𝐾𝑖

)}
𝑗𝑘

 

according to each Information Element’s schema and generation rules (Figure 5).  

 

Figure 5. Formalised dataset production atomic process. 

Analysing Figure 5 we can derive a formal definition of what can be called atomic ground 
truth statement, namely an Instance of Information Element 𝐼𝐸𝑖𝑘 associated to a media item 
𝑚𝑙 and produced by user 𝑢𝑗 ∈ 𝑈𝑖  according to his interpretation of production rule 𝑅𝑖𝑘 . The 

same schema also enlightens how dataset production is highly user-dependent (1). 

In the most general terms, the result of the dataset production process in a Business Domain 

𝐷𝑀𝑖 can be therefore represented as a 3D structure 𝐷𝑆𝑖
𝑗𝑘𝑙

 , where 𝑗 = 1 … |𝑈𝑖|, 𝑘 = 1 … |𝑀|,

𝑙 = 1 … 𝐾𝑖 and 𝐷𝑆𝑖
𝑗𝑘𝑙

= 𝐸𝑥𝑡(𝐼𝐸𝑖𝑙)
𝑗𝑘. 



        

   

 

As a simple example, consider a classical archive annotation process in which one 
documentalist (|𝑈| = 1) annotates a collection M of items following a Documentation Model 
𝐷𝑀. For the sake of conciseness, let us assume that the documentation model includes 
recognition of Persons (𝐼𝐸1) and Locations (𝐼𝐸2) only (|𝐷𝑀| = 2). The resulting dataset is 

then of dimensionality 1𝑥|𝑀|𝑥2 (Figure 6 – (a)). If the number of documentalists increases 
to 2, and the set of content items is equally divided among them, then the dimensionality of 
the dataset is 2𝑥|𝑀|𝑥2, and would be block-diagonal along the user/item dimensions (Figure 
6 – (b)). If we had 2 documentalists, each in charge of annotating one Information Element 
on all items, the tensor dimensionality would still be 2𝑥|𝑀|𝑥2 but the dataset would be block-
diagonal along the user/information element dimension (Figure 6 – (c)).  

 

Figure 6. Different dataset tensor-like configurations. 

Cross-domain reuse of datasets 

Let us now recall the original context of this dissertation, namely that of objectively 

characterising the process of reusing archive annotated items as datasets for training AI 

tools. In the previous section, we introduced a tensor-like representation for datasets and 

here we use it to further characterise the problem. We can represent the process of cross-

domain dataset reuse between business domains 𝐵𝐷𝑖 and 𝐵𝐷𝑗  as a transformation function 

𝑇𝑖𝑗 between spaces of dataset tensors 𝐷𝑆𝑖
𝑙𝑚𝑛 and 𝐷𝑆𝑗

𝑙𝑚𝑛. Furthermore, we denote with 𝑇0𝑗 

the transformation generating the dataset 𝐷𝑆𝑗
𝑙𝑚𝑛 in domain 𝐵𝐷𝑗 from scratch. 

The apparently simple characterisation of the problem is hiding at least three quite complex 

and articulated issues, e.g.: 1) adaptation/transformation of the source description model to 

the target one4; 2) conciliation of source users’ annotations5 and implementation of user-

 

4 E.g., by abstraction, refinement or mapping among information elements. 
5 E.g., by merging or filtering different users’ annotations. 



        

   

 

dependent annotation of the target domain; 3) addition of new media items. As an example, 

let us assume the case in which we want to classify OTT media items by genre and we want 

to reuse a dataset from the archives to train an AI classifier to recognise OTT genres. As we 

have exemplified in Figure 2, the two domains have different reference taxonomies and 

different criteria to associate a certain media item to a taxonomy term. Thus, in this case the 

general adaptation problem is composed of three separate sub-problems: 1) genre 

taxonomy mapping between source and target6; 2) integration of the dataset with new media 

items from the OTT domain; 3) ground truth media item classification by users of the target 

domain. This transformation/adaptation process can be partly automatized by e.g. 

considering static taxonomy mappings, or using more sophisticated approaches employing 

AI-based techniques. No doubt however, that this process has a non-trivial economic 

footprint, and as such has to be appropriately designed and budgeted. 

A particular family of transformation functions 𝑇𝑖𝑗 is that for which we can write a complex 

transformation as a functional composition of intermediate simpler transformations. 

Intermediate simpler transformations can include atomic operations like for example: a) 

removal of certain users’ annotations; b) merge of users’ annotations; c) removal or addition 

of media items; d) addition or removal of Information Elements; e) addition of users’ 

annotations. Implicitly, intermediate transformations define intermediate Business Domains 

(adaptation domains), and thus they imply the existence of intermediate classes of Users 

performing transformations (Figure 7)7. A complete formal characterisation of these 

transformation types is out of scope for this paper, while a detailed discussion about costs 

related to these transformations will be done in the next Section. 

 

Figure 7. Composed dataset transformations. 

 

6 This mapping is a specific case of a more general case of description model mapping. A description model 
mapping can be represented as a two-step transformation process: in the first step the target description model 
is merged with the source description model, in the second step the instances of the target description model 
information elements are generated from the instances of the source description model’s information elements.  
7 Under the assumption that some of these users can be also AI-based machines operating intermediate 
transformation tasks, a new paradigm comes into the scene: using AI to adapt datasets in order to enable 
training AI tools across domains. We can call this paradigm AI4AI. 



        

   

 

Standard datasets and transfer learning 

Naturally, the developed considerations apply unchanged in cases in which the source 

domains are external to the organisation, e.g., datasets are open and available as part of a 

scientific initiative or challenge (e.g., (4)). In these cases, the information about the users 

who created the dataset and their reference annotation rules is normally unavailable. This 

poses an additional challenge to their reuse in an internal business domain since in principle 

all ground truth statements should be re-checked beforehand. A somewhat affine concept 

to the illustrated ones is that of transfer learning (5). Transfer learning is a machine learning 

technique which uses knowledge acquired in a certain domain or application (e.g., cat breed 

classification) in the context of another domain (e.g., dog breed classification). The reused 

knowledge comes normally as a pre-trained AI model which can be fine-tuned in the new 

domain. The usefulness of this approach is of course limited by the availability of pre-trained 

models and hence cannot be generalised to all cases of Information Elements.  

FORMALISING COSTS CONSIDERATIONS 

The previous Sections should have enlightened us to the fact that having annotated assets 
in the archive is not equivalent to having datasets for AI. In the middle, there are non-trivial 
adaptation processes to take into account, which bring along actual costs too. In this Section 
we try to provide a framework to evaluate these costs and assess which is the most 
appropriate strategy to carry out this adaptation. Additional context to this work is provided 
in (2) and in (3). The starting consideration is recognising the comparison term against which 
the adaptation processes is to be referred, namely the one that assumes that the dataset is 
built from scratch in the target domain. 

Let us denote with 𝛾𝜖: 𝑻 → ℝ a functional associating a cost to a dataset transformation 𝑇𝑖𝑗 ∈

𝑻, depending on a certain maximum allowed error8 𝜖. Then we can express the problem of 

cost comparison of two transformations 𝑇𝑖𝑗 and 𝑇′𝑖𝑗 producing the same dataset 𝐷𝑆𝑗
𝑙𝑚𝑛 from 

dataset 𝐷𝑆𝑖
𝑙𝑚𝑛 as:  

 𝛾𝜖(𝑇𝑖𝑗) ≶  𝛾𝜖(𝑇′𝑖𝑗) 1.  

While in general this is a trivial finding, in practice it can be useful when the process structure 
of the two transformation is known, for example when they are composed transformations. 
In this case, we can write: 

 

∑ 𝛾𝜖(𝑇𝑖𝑖+1) <

𝑁

𝑖=1

∑ 𝛾𝜖(𝑇′𝑖𝑖+1)

𝑁′

𝑖=1

 

2.  

 

 

8 Costs can heavily depend on the accepted error. We could associate error to measures of information 
retrieval quality like precision and recall referred between the actual information and the captured ground 
truth. 



        

   

 

Where N and N’ are the number of atomic transformations included in the two cases. In this 
case, the expressed optimisation problem depends on a number of factors, including 
number, nature and efficiency of each atomic transformation on both sides of the inequality. 
Out of the many possible concrete configurations in which Eq. 2 can be developed, an 
interesting case is that in which atomic transformations are performed by automatic tools. In 
that case, Eq. 2 becomes: 

 

∑ 𝛾𝜖(𝑇𝑖𝑖+1) <

𝑁

𝑖=1

∑ 𝛾𝜖(𝑇′𝑖𝑖+1) +

𝑁′

𝑖=1

𝛾𝜖
𝐶𝐻𝐾(𝑇′𝑖𝑖+1) 

3.  

Where 𝛾𝜖
𝐶𝐻𝐾(𝑇′𝑖𝑖+1) represents the cost related do the check-and-correction of errors 

introduced by the automatic tool performing transformation 𝑇′𝑖𝑖+1. 

Finally, to impose the condition that adaptation (be it performed manually or AI-supported) 
is convenient w.r.t. creation from scratch we should write the following condition: 

 

max {∑ 𝛾𝜖(𝑇𝑖𝑖+1)

𝑁

𝑖=1

, ∑ 𝛾𝜖(𝑇′𝑖𝑖+1) +

𝑁′

𝑖=1

𝛾𝜖
𝐶𝐻𝐾(𝑇′𝑖𝑖+1)} < 𝛾𝜖(𝑇0𝑗) 

4.  

Sticking to our running example of genre classification, Table 1 summarises the 
transformations (column-wise) of three different approaches at the generation of a dataset 
aimed at training an AI classifier in the OTT domain starting from an archive dataset. Notice 
that, according to this model, it is assumed that the AI training phase is not able to 
distinguish, statistically, among the three paths, i.e. that the observed average error 𝜖 is the 
same for the three cases. Hence, the quality of the AI model should not be affected by the 
strategy adopted for dataset creation. 

Manual adaptation Creation from scratch AI-supported adaptation 

Filtering of source Media Items 
(𝛾𝜖,1) 

Collection of Media Items (𝛾𝜖,2) Filtering of source Media Items 
(𝛾𝜖,1) 

Manual Genre Taxonomy 
Mapping 

(𝛾𝜖,3) 

 

Manual Media Items 
classification 

(𝛾𝜖,4) 

Automatic Genre Taxonomy 
Mapping 

(𝛾𝜖,5) 

Collection of additional Media 
Items (𝛾𝜖,6) 

Taxonomy Check&Correction 

(𝛾𝜖,7) 

Manual classification of 
additional Media Items 

𝛾𝜖,8 

Automatic Media Items 
Classification 

(𝛾𝜖,9) 

Users’ annotation conciliation (𝛾𝜖,10) Classification Check&Correction 

(𝛾𝜖,11) 

AI training 

Table 1. Comparison of transformations steps in three different cases. 



        

   

 

In this example, the winning approach is the one whose sum of costs associated to each 
traversed row is minimum. Furthermore, Eq. 4 has the following form: 

 max{𝛾𝜖,1 + 𝛾𝜖,3 + 𝛾𝜖,6 + 𝛾𝜖,8 + 𝛾𝜖,10, 𝛾𝜖,1 + 𝛾𝜖,5 + 𝛾𝜖,7 + 𝛾𝜖,9 + 𝛾𝜖,11}

< 𝛾𝜖,2 + 𝛾𝜖,4 + 𝛾𝜖,10 

5.  

CONCLUSIONS 

With this work, we aimed at contributing in a rigorous way to the discussion about the 
opportunity of reusing archive assets as ground truth in AI training processes. The default 
belief is that organisations owning huge archives have a natural advantage in implementing 
these processes w.r.t. the ones having to start from scratch. To objectify and put under 
thorough verification this default belief, we presented a formal framework for the 
representation and analysis of processes related to the reuse of archive assets to train AI 
tools. We firstly introduced the notion of tensor-like representation of datasets, accounting 
in a compact manner about the user-dependent nature of annotation and the differences 
existing in different business domains in terms of description models and annotation rules. 
We then formalised the problem of dataset reuse across business domains and provided a 
formal framework for the corresponding costs evaluation. Further future work will consist in 
refining the theoretical model, and applying it in concrete cases.  
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