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ABSTRACT 

With rapid developments of display technology in recent years, Ultra-high 
definition (UHD) high dynamic range (HDR) displays have emerged in 
consumer markets. However, due to the lack of UHD HDR video contents, 
it is necessary to convert legacy high definition (HD) videos with standard 
dynamic range (SDR) to their UHD HDR versions. In this paper, we first 
introduce a workflow to down-convert existing UHD HDR videos to their HD 
SDR versions and then propose a joint super-resolution, gamut extension, 
and inverse tone-mapping network (JSGIN), which directly learns the up-
conversion from the HD SDR videos to their UHD HDR versions. Our JSGIN 
can enhance visual experience by reconstructing lost information and 
achieves better subjective visual quality with fewer artifacts than recent 

state-of-the-art methods. 

 
INTRODUCTION 

Display technology has developed fast in recent years, Ultra-high definition (UHD) higher 
dynamic range (HDR) displays have become available for consumers. Nevertheless, 
because of the shortage of UHD HDR video contents, it is required to up-convert legacy high 
definition (HD) standard dynamic range (SDR) videos to UHD HDR videos. Compared with 
the current HD SDR television systems ‘(1)’, UHD television systems ‘(2)’ provide higher 
spatial resolution and wider color gamut, and HDR television systems ‘(3)’ provide a higher 
dynamic range. 

Super-resolution (SR) methods up-scale low-resolution images to high-resolution images. 
Recent convolutional neural network (CNN) based methods have achieved considerable 
improvements over conventional SR methods. SRCNN ‘Dong et al (4)’ was the first CNN-
based SR method. Then, the CNN architecture was improved by various methods such as 
sub-pixel convolution ‘Shi et al (5)’ and modified residual blocks ‘Lim et al (6)’. 

Gamut extension (GE) algorithms extend colors from a source gamut to a wider destination 
gamut. Linear color space conversion cannot restore color information outside the source 
gamut. Conventional GE algorithms attempt to make full use of the wider destination gamut. 
Recently, ‘TAKEUCHI et al (7)’ proposed a CNN-based GE algorithm that achieves 
significant gains against conventional GE algorithms. 



 

Inverse tone-mapping (ITM) methods expand SDR images to HDR images. Compared with 
conventional ITM methods that only focus on mapping the dynamic range, CNN-based ITM 
methods can restore the lost details in highlights and shadows. ‘Eilertsen et al (8)’ introduced 
a deep learning system to reconstruct an HDR image from a single exposed SDR image. 

UHD HDR videos can be reconstructed from HD SDR videos by cascading SR, GE, and 
ITM methods. However, the errors from the previous conversion may accumulate, which 
leads to less accurate results and more overall complexity compared with the joint learning 
of SR, GE, and ITM. A multi-purpose CNN structure ‘Kim and Kim (9)’ was first proposed to 
perform the joint learning task of SR, GE, and ITM to directly up-convert HD SDR videos to 
UHD HDR videos. Then, Deep SR-ITM ‘Kim et al (10)’ was proposed to achieve better 
results than ‘(9)’ by introducing input decomposition methods and modulation blocks. 

ResNet ‘He et al (11)’ introduces local residual learning to ease the difficulty of training of 
deep CNNs. Global residual learning in SR was first adopted by VDSR ‘Kim et al (12)’ to 
facilitate training convergence for a deep CNN. Both local residual learning and global 
residual learning are adopted in our method. 

In this paper, we first introduce a workflow to down-convert the existing UHD HDR videos to 
their HD SDR versions. Then, we propose a single CNN to jointly learn SR, GE, and ITM, 
which can directly up-convert HD SDR videos to their UHD HDR versions. Compared to 
recent state-of-the-art methods ‘(9) (10)’, UHD HDR videos generated by our method 
provide a better visual experience. 

 
METHODOLOGY 

To train our network, both UHD HDR videos and their HD SDR versions are required. In our 
paper, UHD HDR videos collected by ‘(10)’ are used as ground truth. Their resolution is 4K 
(3840 × 2160), bit depth is 10, and opto-electronic transfer function (OETF) is Perceptual 
Quantization (PQ). Different from ‘(10)’ where the automatic conversion process of YouTube 
is used to convert HDR videos to their SDR versions, we introduce a workflow to down-
convert the UHD HDR videos to their HD SDR versions. 
 
Down-conversion For Creating Our Dataset 

Figure 1 shows the workflow of down-conversion from UHD HDR videos to their HD SDR 
versions. In the 1st step, digitally represented luminance and color-difference signals 
[𝐷𝑌,2020

′ , 𝐷𝐶𝐵,2020
′ , 𝐷𝐶𝑅,2020

′ ] in the bit-depth of 10 bits are inverse-quantized to normalized 

luminance and color-difference signals [ 𝐸𝑌,2020
′ , 𝐸𝐶𝐵,2020

′ , 𝐸𝐶𝑅,2020
′ ] according to 

Recommendation ITU-R BT.2020 ‘(2)’ as follows: 

𝐸𝑌,2020
′ = (𝐷𝑌,2020

′ /4 − 16)/219, 

𝐸𝐶𝐵,2020
′ = (𝐷𝐶𝐵,2020

′ /4 − 128)/224, 

𝐸𝐶𝑅,2020
′ = (𝐷𝐶𝑅,2020

′ /4 − 128)/224. 

In the 2nd step, luminance and color-difference signals [𝐸𝑌,2020
′ , 𝐸𝐶𝐵,2020

′ , 𝐸𝐶𝑅,2020
′ ] are 

converted to RGB color signals [𝐸𝑅,2020
′ , 𝐸𝐺,2020

′ , 𝐸𝐵,2020
′ ] according to Recommendation ITU-

R BT.2020 ‘(2)’ as follows: 



 

[

𝐸𝑅,2020
′

𝐸𝐺,2020
′

𝐸𝐵,2020
′

] = [
1 0 1.4746
1 −0.1646 −0.5714
1 1.8814 0

] [

𝐸𝑌,2020
′

𝐸𝐶𝐵,2020
′

𝐸𝐶𝑅,2020
′

]. 

 

Figure 1 - Flow chart of down-conversion. 

In the 3rd step, we tone map the HDR RGB color signals [𝐸𝑅,2020
′ , 𝐸𝐺,2020

′ , 𝐸𝐵,2020
′ ] to SDR 

RGB color signals [𝑒𝑅,2020
′ , 𝑒𝐺,2020

′ , 𝑒𝐵,2020
′ ]  by electrical-electrical transfer function (𝐸𝐸𝑇𝐹) 

specified in Recommendation ITU-R BT.2390 ‘(13)’ as follows: 

𝑒𝑅,2020
′ = 𝐸𝐸𝑇𝐹(𝐸𝑅,2020

′ ), 

𝑒𝐺,2020
′ = 𝐸𝐸𝑇𝐹(𝐸𝐺,2020

′ ), 

𝑒𝐵,2020
′ = 𝐸𝐸𝑇𝐹(𝐸𝐵,2020

′ ). 

In the 4th step, non-linearly represented RGB color signals [𝑒𝑅,2020
′ , 𝑒𝐺,2020

′ , 𝑒𝐵,2020
′ ] are 

converted to linearly represented RGB color signals [𝑒𝑅,2020, 𝑒𝐺,2020, 𝑒𝐵,2020] by PQ electro-

optical transfer function (𝐸𝑂𝑇𝐹𝑃𝑄 ) specified in Recommendation ITU-R BT.2100 ‘(3)’ as 

follows: 

𝑒𝑅,2020 = 𝐸𝑂𝑇𝐹𝑃𝑄(𝑒𝑅,2020
′ ), 

𝑒𝐺,2020 = 𝐸𝑂𝑇𝐹𝑃𝑄(𝑒𝐺,2020
′ ), 

𝑒𝐵,2020 = 𝐸𝑂𝑇𝐹𝑃𝑄(𝑒𝐵,2020
′ ). 



 

In the 5th step, BT.2020 RGB color signals [𝑒𝑅,2020, 𝑒𝐺,2020, 𝑒𝐵,2020] are converted to BT.709 

RGB color signals [𝑒𝑅,709, 𝑒𝐺,709, 𝑒𝐵,709] according to Recommendation ITU-R BT.709 ‘(1)’ 

and Recommendation ITU-R BT.2020 ‘(2)’ as follows: 

[

𝑒𝑅,709
𝑒𝐺,709
𝑒𝐵,709

] = [
3.2405 −1.5371 −0.4985
−0.9693 1.8760 0.0416
0.0556 −0.2040 1.0572

] [
0.6370 0.1446 0.1689
0.2627 0.6780 0.0593

0 0.0281 1.0610
] [

𝑒𝑅,2020
𝑒𝐺,2020
𝑒𝐵,2020

]. 

In the 6th step, linearly represented RGB color signals [𝑒𝑅,709, 𝑒𝐺,709, 𝑒𝐵,709] are converted to 

non-linearly represented RGB color signals [𝑒𝑅,709
′ , 𝑒𝐺,709

′ , 𝑒𝐵,709
′ ] by the inverse of electro-

optical transfer function (𝐸𝑂𝑇𝐹1886
−1 ) specified in Recommendation ITU-R BT.1886 ‘(14)’ as 

follows: 

𝑒𝑅,709
′ = 𝐸𝑂𝑇𝐹1886

−1 (𝑒𝑅,709), 

𝑒𝐺,709
′ = 𝐸𝑂𝑇𝐹1886

−1 (𝑒𝐺,709), 

𝑒𝐵,709
′ = 𝐸𝑂𝑇𝐹1886

−1 (𝑒𝐵,709). 

In the 7th step, the image is bicubic down-sampled by a factor of 0.5. The resolution of the 
down-sampled image is 1920 × 1080 , which is compliant with Recommendation ITU-R 
BT.709 ‘(1)’. [𝑒𝑅,709,𝐷𝑆

′ , 𝑒𝐺,709,𝐷𝑆
′ , 𝑒𝐵,709,𝐷𝑆

′ ] represent RGB color signals after down-sampling. 

In the 8th step, RGB color signals [𝑒𝑅,709,𝐷𝑆
′ , 𝑒𝐺,709,𝐷𝑆

′ , 𝑒𝐵,709,𝐷𝑆
′ ] are converted to luminance 

and color-difference signals [𝑒𝑌,709,𝐷𝑆
′ , 𝑒𝐶𝐵,709,𝐷𝑆

′ , 𝑒𝐶𝑅,709,𝐷𝑆
′ ] according to Recommendation 

ITU-R BT.709 ‘(1)’ as follows: 

[

𝑒𝑌,709,𝐷𝑆
′

𝑒𝐶𝐵,709,𝐷𝑆
′

𝑒𝐶𝑅,709,𝐷𝑆
′

] = [
0.2126 −0.1146 0.5
0.7152 −0.3854 −0.4542
0.0722 0.5 −0.0458

] [

𝑒𝑅,709,𝐷𝑆
′

𝑒𝐺,709,𝐷𝑆
′

𝑒𝐵,709,𝐷𝑆
′

]. 

In the 9th step, normalized luminance and color-difference signals [𝑒𝑌,709,𝐷𝑆
′ , 𝑒𝐶𝐵,709,𝐷𝑆

′ , 

𝑒𝐶𝑅,709,𝐷𝑆
′ ] are quantized to digitally represented luminance and color-difference signals 

[𝑑𝑌,709,𝐷𝑆
′ , 𝑑𝐶𝐵,709,𝐷𝑆

′ , 𝑑𝐶𝑅,709,𝐷𝑆
′ ] in the bit-depth of 8 bits according to Recommendation ITU-

R BT.709 ‘(1)’ as follows: 

𝑑𝑌,709,𝐷𝑆
′ = 𝑟𝑜𝑢𝑛𝑑(219 × 𝑒𝑌,709,𝐷𝑆

′ + 16), 

𝑑𝐶𝐵,709,𝐷𝑆
′ = 𝑟𝑜𝑢𝑛𝑑(219 × 𝑒𝐶𝐵,709,𝐷𝑆

′ + 128), 

𝑑𝐶𝑅,709,𝐷𝑆
′ = 𝑟𝑜𝑢𝑛𝑑(219 × 𝑒𝐶𝑅,709,𝐷𝑆

′ + 128), 

where the 𝑟𝑜𝑢𝑛𝑑 operator returns 0 for fractional parts below 0.5 and 1 for fractional parts 
above or equal to 0.5. 
 
Up-conversion 

As shown in Figure 2, a joint SR, GE, and ITM network (JSGIN) is proposed to directly learn 
the up-conversion from HD SDR videos to their UHD HDR versions. Our JSGIN is composed 
of five parts: shallow feature extraction, deep feature extraction, up-scaling, global skip 
connection, and reconstruction.  



 

 

Figure 2 - Network architecture of our joint SR, GE, and ITM network (JSGIN). 

Low-level features are extracted by the first convolutional layer (Conv) and then high-level 
features are extracted by 16 modified residual blocks (ResBlocks) ‘(6)’ followed by one 
convolutional layer. Next, the sub-pixel structure ‘(5)’ which consists of one convolutional 
layer and one shuffle layer is adopted for up-scaling. Finally, the input HD SDR frame is 
converted to the global skip by the inverse of the workflow in Figure 1 and the global skip 
image is added to the output of the last convolutional layer to reconstruct the final output 
UHD HDR frame. Compared with the global skip, the final output image restores the lost 
information of high frequency, colors, and contrast. Both local residual learning and global 
residual learning are adopted to ease the difficulty of training of deep CNNs. 

The training and testing datasets of JSGIN require both UHD HDR videos and their HD SDR 
versions. In our paper,10 different UHD HDR videos collected by ‘(10)’ are used as ground 
truth. Different from the automatic down-conversion process of YouTube used in ‘(10)’, we 
use the workflow in Figure 1 to down-convert the UHD HDR videos to their HD SDR 
versions. The 10 UHD HDR videos consisting of 59K frames are downloaded from YouTube. 
The durations of the videos vary from 47 seconds to 197 seconds. Following ‘(10)’, 7 UHD 
HDR videos consisting of 44K frames are used for training and 160 × 160  crops are 
randomly sampled from a video frame at the interval of about 45 frames. 28 different scenes 
selected from the remaining 3 UHD HDR videos are used for testing. Therefore, the UHD 
HDR videos used in the training set and the testing set are different. 

We pre-process all the input and output video frames by converting digitally represented 
luminance and color-difference signals to normalized RGB color signals. Our JSGIN is 
trained by MSE loss function: 

𝐿𝑜𝑠𝑠(𝜃) =
1

𝑛
∑‖𝑓(𝑥𝑖; 𝜃) − 𝑦𝑖‖

2

𝑛

𝑖=1

, 

where n represents the number of training samples, 𝑓 represents the end-to-end mapping 
function of JSGIN, 𝑥𝑖  represents the i-th HD SDR input frame, 𝜃  represent network 
parameters, and 𝑦𝑖 represents the i-th UHD HDR ground truth frame. We train our JSGIN 
using Adam optimizer ‘Kingma and Ba (15)’ with a mini-batch size of 16 for 320 epochs. 
Weights are randomly initialized as in ‘He et al (16)’. The initial learning rate is 10−6 and is 
divided by 10 at the 200th epoch and the 300th epoch.  



 

EXPERIMENTS 

All experiments are conducted on an NVIDIA GeForce GTX 1080Ti. 
 
Comparison of Down-conversion 

      

(a)                                           (b)                                            (c)  

       

(d)                                            (e)                                            (f)   

Figure 3 - Qualitative comparison of down-conversion between the automatic down-
conversion process of YouTube and our workflow. 3 UHD HDR video frames are down-
converted to their HD SDR versions. (a), (b), and (c) are generated by YouTube. (d), (e), 
and (f) are generated by our workflow. 



 

The qualitative comparison of down-conversion between the automatic down-conversion 
process of YouTube and our workflow is shown in Figure 3. In Figure 3 (a), clouds seem 
overexposed and lose details. Figure 3 (b) exhibits color banding artifacts. The colors in 
Figure 3 (c) are washed out especially for red and green. In Figure 3 (d), (e), and (f), the 
video frames down-converted by our workflow preserve more information about colors and 
contrast. 
 
Comparison of Up-conversion 

The quantitative performance is compared on 2 metrics: PSNR and SSIM ‘Wang et al (17)’. 
Normalized RGB color signals are compared for PSNR and SSIM. Because Deep SR-ITM 
outperforms Multi-purpose CNN on both metrics ‘(10)’, we only compare our JSGIN to Deep 
SR-ITM. As shown in Table 1, since original Deep SR-ITM is trained on a different dataset, 
it has poor quantitative performance on our testing set. For a fair comparison, we use the 
source code provided by ‘(10)’ to retrain Deep SR-ITM on our dataset. Our JSGIN 
outperforms Deep SR-ITM retrained on our dataset on both metrics with fewer network 
parameters. For JSGIN, removing global skip connection leads to performance degradation. 

Method Parameters PSNR (dB) SSIM 

The inverse of the workflow in Figure 1 0 30.63 0.9351 

Original Deep SR-ITM 2.50 × 106 26.97 0.8745 

Deep SR-ITM retrained on our dataset 2.50 × 106 31.65 0.9433 

JSGIN 1.37 × 106 32.16 0.9473 

JSGIN without global skip connection 1.37 × 106 32.04 0.9461 

Table 1 - Quantitative comparison of up-conversion. 

The qualitative comparison of up-conversion is shown in Figure 4 and Figure 5. Following 
Deep SR-ITM, the MPC-HC player and the madVR are used to obtain the visualization of 
UHD HDR video frames. Original Multi-purpose CNN, original Deep SR-ITM, Deep SR-ITM 
retrained on our dataset, and JSGIN are trained with the same UHD HDR ground truth 
frames but different HD SDR input frames. Original Multi-purpose CNN and original Deep 
SR-ITM use the automatic process of YouTube to down-convert the UHD HDR frames to 
corresponding HD SDR input frames. In contrast, Deep SR-ITM retrained on our dataset 
and JSGIN uses our down-conversion workflow in Figure 1.  

For the input frame from our testing set, the edges of arms predicted by our JSGIN in Figure 
4 (f) is smoother than those in Figure 4 (b), (c), (d), and (e). For the input frame from the 
testing set of Multi-purpose CNN and Deep SR-ITM, the skies predicted by Multi-purpose 
CNN and Deep SR-ITM exhibit color banding artifacts in Figure 5 (c) and (d) respectively. 
In comparison, the UHD HDR frames predicted by Deep SR-ITM retrained on our dataset 
and our JSGIN enhance the visual experience without noticeable artifacts in Figure 5 (e) 
and (f) respectively, which indicates that networks trained on our dataset cause fewer 
artifacts. 



 

     

(a)                                            (b)                                            (c) 

     

(d)                                            (e)                                            (f)   

Figure 4 - Qualitative comparison of up-conversion for the input frame from our testing set. 
(a) is the ground truth frame. (b) is predicted by the inverse of the workflow in Figure 1. (c) 
is predicted by original Multi-purpose CNN. (d) is predicted by original Deep SR-ITM. (e) is 

predicted by Deep SR-ITM retrained on our dataset. (f) is predicted by our JSGIN. 



 

     

(a)                                             (b)                                             (c) 

     

(d)                                             (e)                                             (f)   

Figure 5 - Qualitative comparison of up-conversion for the input frame from the testing set 
of Multi-purpose CNN and Deep SR-ITM. (a) is the ground truth frame. (b) is predicted by 
the inverse of the workflow in Figure 1. (c) is predicted by original Multi-purpose CNN. (d) 
is predicted by original Deep SR-ITM. (e) is predicted by Deep SR-ITM retrained on our 

dataset. (f) is predicted by our JSGIN. 

 

 

 



 

CONCLUSION 

In this paper, we first introduce a workflow to down-convert existing UHD HDR videos to 
their HD SDR versions. Compared with the automatic conversion process of YouTube, the 
HD SDR videos generated by our method preserve more information about colors and 
contrast. Then, we propose JSGIN to directly learn the up-conversion from the HD SDR 
videos to their UHD HDR versions. Both local residual learning and global residual learning 
are adopted in JSGIN to facilitate training convergence. Our JSGIN achieves better 
subjective visual quality than recent state-of-the-art methods. In the future, we plan to apply 
3D convolution or optical flow to our JSGIN to utilize temporal information. With the help of 
temporal information, our JSGIN can generate temporally more consistent UHD HDR 
videos. 
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