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ABSTRACT 

The demand for video through OTT has been constantly increasing over the years. With the 

COVID situation, this demand is skyrocketing, hence the need for better video compression. 

The human visual system (HVS) can quickly select visually important regions in its visual 

field. Those regions are captured at high resolution, while other peripheral regions receive 

little attention. Saliency maps are a way to imitate the HVS attention mechanism. Recently, 

deep learning-based saliency models have achieved tremendous improvements. This paper 

aims at leveraging state-of-the-art deep learning-based saliency models to improve video 

coding efficiency. First, a saliency-based rate control scheme is integrated in an HEVC video 

encoder. Then, a saliency guided preprocessing filtering step is introduced. Finally, the two 

approaches are combined. Objective and subjective evaluations show that it allows lowering 

the bitrate from 6% to almost 30% while maintaining the same visual quality. 

 

INTRODUCTION 

Video demand on the internet has grown significantly in the past years, representing as of 
today 80% of all traffic while representing only 67% in 2016 as described by CISCO (1) 
report. With COVID situation, the demand for video services skyrockets, leading operators 
to degrade video quality to avoid network congestion and services interruptions. Although 
5G deployment has started and Fiber-to-the-home (FTTH) is becoming more and more 
prevalent, the network congestion still remains a serious issue for operators. 

Several solutions exist to address this issue using emerging technologies. On one hand, the 
optimization of video delivery, switching from unicast to multicast for high audience services, 
is a solution. This can be achieved, for example, by using recently standardized DVB-MABR 
delivery DVB (2). On the other hand, the source coding can be improved to further reduce 
the transported video files size, for instance by using VVC ITU-T (3) or AV1 AOM (4). 
Although these solutions address the bandwidth issue, their deployment might cause 
problems for operators. First, the investment cost required to upgrade and replace network 
equipment to support multicast is high. Second, the installed parc of receivers is not 
compatible with a new codec and would then not be compatible with upgraded video 
services.  

Another solution to address this problem while maintaining compatibility with currently in-
place ecosystem consists of improving coding efficiency of existing codecs. Recent 
encoders are using complex algorithms in order to achieve perceptually relevant 
compression performance. In order to push further the envelope, one must rely on even 
more advanced mechanisms, such as those proposed in this paper. 



        

The human visual system (HVS) can quickly select visually important regions in its visual 
field. Thanks to the foveation mechanism, those regions are captured at high resolution, 
while other peripheral regions receive little attention at low resolution. This cognitive process 
enables humans to interpret complex scenes in real-time. Taking advantage of HVS is a 
challenge for encoder manufacturers, which try to mimic it to improve coding performance. 
The usage of saliency maps as a basis for making encoding decision is addressing this 
challenge but traditional approaches were not accurate enough to achieve substantial gains 
so far. Recently, deep learning-based models have achieved tremendous improvements, 
relying on the powerful end-to-end learning ability of neural networks and the availability of 
large-scale saliency datasets. 

This paper aims at leveraging state-of-the-art AI-based saliency models to improve video 
coding efficiency. A saliency-based rate control scheme is proposed to modulate frame 
areas compression according to the predicted saliency map. In addition, the saliency data 
is used to guide pre-processing decision, improving video quality while lowering the bitrate. 
The efficiency of the proposed method is assessed using both objective and subjective 
criterions, reporting bitrate savings at a similar perceived video quality. 

The rest of the paper is organized as follows. The first section provides an overview of 
related work on saliency estimation and its application to video encoding. The second 
section introduces the proposed method and how it is practically integrated in an industrial 
HEVC encoder. The third section reports experimental procedure and results. Eventually, 
the paper is concluded in the last section. 

RELATED WORK 

Visual attention modelling 

Predicting the human visual attention is an intensive research area in cognitive sciences 
and computer vision since several decades. Automatically detecting and segmenting salient 
regions of an image or video has a lot of interest in many computer vision tasks. For 
example, Ma et al (6) and Lee et al (7) use it for visual tracking, Xu et al (8) for image 
captioning, Qin et al (9) and Fu et al (10) for image/video segmentation. In order to predict 
where people look in a scene, two kinds of models can be used: fixation prediction (FP) 
models, or salient object detection (SOD) models. The first ones aim to attend where an 
observer may fixate within few seconds of free viewing. The second ones detect and 
segment the entire extent of the salient regions/objects in the scene. Although promising 
results have been achieved with SOD models, they often fail to detect most salient objects 
in complex cluttered scenes containing several objects. Li et al (11) demonstrated that this 
is mostly due to a heavy bias in many widely used SOD datasets that have only a few 
obvious objects in the scene. Moreover, the human attention prior from FP models is more 
consistent with visual processing of human visual system because of its origin from cognition 
and psychology research community. FP are therefore more suited to the video coding use 
case. 

Existing FP models can be categorized into two classes: conventional and deep learning-
based solutions. 

Conventional solutions 

These kinds of solutions mainly rely on bottom-up mechanisms and cognitive assumptions 
about visual attention. They use biologically-inspired hand-crafted features such as color, 



        

intensity or orientation to create feature maps that are then weighted and summed to create 
a saliency map. A saliency map is a gray-scale image in which the brightness of a pixel is 
proportional to its saliency. Kosh et al (12) proposed a theoretical model that has been the 
basis of many later models. When published, it was not yet implemented but provided the 
algorithmic reasoning for later implementations. 

All these visual attention models can be categorized into different classes, such as cognitive 
models, Itti et al. (13), Bayesian models, Zhang et al. (14), decision theoretic models, Gao 
et al. (15), information theoretic models, Bruce et al. (16), graphical models, Harel et al. (17), 
pattern classification models, Judd, T. et al. (18), etc. Borji and Itti (19) present a detailed 
overview of these models. Judd et al (20) show that most of them cannot compete with a 
simple center-prior model, which limits their applicability to the video coding field. Thanks to 
the creation of large-scale eye tracking datasets, deep learning-based models have been 
proposed and generally offer better performances. 

Deep learning-based solutions 

Vig et al (21) was an early model that automatically learns deep representation of FP. It uses 
a set of shallow CNN to search optimal deep features and feed them to an SVM for fixation 
prediction.  Later, deeper and more complex models were proposed for example by 
Kruthiventi et al (22), Huang et al (23) and Liu et al (24). All of them rely on deep CNN and 
use pretrained architectures such as VGG16 by Simonyan et al (25) to extract visual features 
used to predict fixation points.  

Other models are based on autoencoder architectures to directly construct the saliency map 
such as works by Simonyan et al (26) and Pan et al (27). These models use similar feature 
extractor backbones but also learn to reconstruct the saliency map to its final size with 
convolution and upsampling layers while previous works has commonly used bilinear 
interpolation for that task. 

All presented models have been designed for static visual saliency, but some works have 
focused on dynamic saliency models. Most of them rely on two-stream networks such as 
works done by Fang et al (28), Bak et al (29), or 3D CNN as Sun et al (30) did, that 
respectively extract visual and temporal features in parallel or simultaneously. While being 
much more computationally expensive than static models, it has been proven by 
Tangemann et al (31) that dynamic models failed to capture important temporal patterns for 
saliency prediction. This is mostly due to a deficiency of datasets used to train video saliency 
models. 

Saliency-based video coding 

Use of saliency data in video coding is a way to imitate the foveation mechanism of the 
human visual system (HVS) that capture visually important region at high resolution while 
other peripheral regions receive little attention at low resolution. So, it seems to be a good 
solution to reduce video bitrate without sacrificing quality of regions of interest. Different 
works use saliency data in video coding field, and two categories of works can be 
distinguished: implicit and explicit methods.  

Implicit methods use saliency data before feeding the video to the encoder. For example, Itti 
et al (32) and Polakovič et al (33) apply non-uniform blur according to a saliency map to the 
input frame to force the desired bit allocation. They show that pre-processed videos have a 
better visual quality than the unprocessed ones at the same bitrate.  



        

Explicit methods modify internal encoder data according to the saliency map to change bit 
allocation. The most commonly used strategy is to modify quantization parameter for each 
macroblock according to its mean saliency value as proposed by Gupta et al (34), Li et al 
(35), Zhu et al (36) and Lyudvichenko et al (37). While these works directly adapt bit 
allocation modifying quantization parameters, some works use saliency data to adapt 
computational resources. Wei et al (38) propose a fast CU mode decision using saliency as 
an approximation of texture complexity and movements. 

While some works show quality improvement using saliency data (35)(36), others highlight 
bitrate reduction with equivalent perceived quality (32)(37)(38).  

In this work, relying on a deep learning-based saliency model, we aim to leverage saliency 
data both in an implicit and explicit way. This is integrated in an optimized HEVC encoder, 
using realistic video delivery bitrates to match actual industrial use cases. 

PROPOSED SOLUTION 

 Proposed architecture 

A video encoder is usually not limited to the implementation of a core codec, such as HEVC. 
Many other parts are combined to maximize coding efficiency. The black part of Figure 1 
summarizes such a system. The quality of pre-processing, pre-analysis and rate control play 
an equally important role as the encoding core regarding resulting video quality. 

 

Figure 1: Proposed video encoder architecture, with saliency process indicated in green. 

In this paper, it is proposed to add the saliency information to the coding structure, as 
depicted in green on Figure 1. A saliency map is computed using the neural network 
described by Kroner et al (27). It is an autoencoder characterized by a lightweight 
architecture combined with a multi-scale feature extractor. It has been selected because it 
achieves fixation prediction accuracy at the level of current state of the art approaches on 
several public datasets while being computationally less expensive. The network is used as 



        

provided by the author and has not been retrained, so some of its drawbacks may potentially 
impact our results. 

Each video frame of the processed video stream is downscaled to 320x240 pixels using a 
Lanczos kernel prior to being input to the neural network. The output of the network is a 
saliency map, which for each pixel provides a saliency score between 0 and 255. The 
saliency map is rescaled back to the original frame resolution through simple bilinear 
interpolation and transmitted to the other processing blocks. The saliency guided filtering 
block is a pre-processing block, implementing the implicit use of saliency data. The explicit 
use of saliency data is integrated in the rate-control process. 

Implicit solution: pre-processing 

Even though encoders are built in order to preserve the most useful information, and get rid 
of the less visible details, it has been demonstrated that it is possible to improve coding 
performance by filtering data from the video prior to encoding. It is a video pre-processing 
which can be referred to as simplification. One most recent example is the “GOP based 
filter” which has been proposed and implemented along with the VVC standardisation 
process. Latest results as the one by Wennersten et al (5) demonstrate a 5.5% coding 
efficiency gain on top of the already excellent VVC. Many strategies are possible for video 
simplification. As shown in (5), better performance is achieved when knowing the nature of 
compression. Thus, the filter is adapted temporally, depending on the encoding type of each 
frame. Rather than adapting a simplification filter temporally, it is proposed here to adapt it 
spatially, based on the information provided by salience analysis. 

The goal here is to demonstrate how saliency analysis can be useful to video compression. 
The optimization of the simplification filter itself is out of the scope of this paper. Therefore, 
a simple low pass filtering strategy has been implemented. A set of short linear filters has 
been defined, as illustrated by Table 1. These filters are classical windowed sinus cardinal 
based low pass. The set is generated by varying the filter synthesis cut-off frequency. Each 
filter is characterized by the frequency bandwidth which is preserved, ranging from full 
bandwidth (no filtering) to 13% of the bandwidth (strong filtering effect). The main benefit of 
these filters is their low complexity, which make them easier to apply selectively at the pixel 
level. 

Table 1: Integer digital low pass filters bank for video simplification. 

Filter Cut-off Frequency  Filter coefficients 

100% bandwith (identity) 0 0 0 1024 0 0 0 

93% bandwith 15 -31 48 960 48 -31 15 

87% bandwith 25 -57 94 900 94 -57 25 

… 

25% bandwith 25 104 220 326 220 104 25 

19% bandwith 44 113 206 298 206 113 44 

13% bandwith 57 117 192 292 192 117 57 

 

At this stage, the saliency of each pixel is known, and a set of filters is available. A simple 
linear mapping is defined between the saliency value and the filter index in the filter table. 
The maximal filtering is a parameter of the linear function. 

 



        

Explicit solution: QP-adaptation 

In HEVC, a quantization parameter (QP) is used to determine the quantization step. The 
higher the QP, the higher the quantization, and the lower the number of bits allocated. Thus, 
the main idea is to increase the QP on non-salient regions to reduce bitrate and decrease it 
on salient regions in order to preserve the subjective visual quality. 

The QP is managed at macroblock level. So, based on the saliency map, we defined a 
saliency value for each macroblock, which is defined as the mean value of every pixels 
inside this macroblock. The saliency value is defined between 0 and 255, 255 corresponding 
to a very salient region. A rate control module uses this saliency value to adapt the QP for 
each macroblock. In order to do that, the macroblock saliency value is first normalized 
between 0 and 3 to define 4 saliency levels. Level 3 defines most salient areas while level 
0 defines less salient ones. Then, a saliency factor is defined as below and is applied to the 
initial QP value. 

𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝐹𝑎𝑐𝑡𝑜𝑟 = {
𝑎,𝑤ℎ𝑒𝑟𝑒 𝑎 > 1.0              𝑖𝑓 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝐿𝑒𝑣𝑒𝑙 = 3
𝑥,𝑤ℎ𝑒𝑟𝑒 𝑥 < 1.0              𝑖𝑓 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝐿𝑒𝑣𝑒𝑙 < 3

 

a is a customizable constant value. The lower the saliency level, the lower the x parameter. 
Simply lowering the QP value proportionally to the saliency level tends to degrade the quality 
too much on low bitrate. That is why we defined the x parameter as follow, where b is a 
constant factor fixed for each saliency level, and qualityFactor is a ratio between a specified 
quality index (integer between 0 and 255), and its mean value (128). This quality index is 
used by the encoder to tune the internal parameters and make the coding decisions. 
qualityFactor is less than 1 for high quality encoded sources, and higher than 1 for low quality 
ones. 

𝑥 = {
𝑏 ∗ 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟,              𝑖𝑓 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 < 1.0
𝑏,                                               𝑖𝑓 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 ≥ 1.0

 

Moreover, we also considered the percentage of macroblocks with saliency level 3 over the 
total number of macroblocks inside a frame. Indeed, our hypothesis is that the larger this 
value, the more we can degrade the quality of non-salient macroblocks without losing 
subjective quality. Finally, the whole process summarizes as: 

𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝐹𝑎𝑐𝑡𝑜𝑟 =  

{
 
 

 
 

𝑎 𝑤ℎ𝑒𝑟𝑒 𝑎 > 1.0,                                                  𝑖𝑓 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝐿𝑒𝑣𝑒𝑙 = 3
𝑏 ∗ 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟

𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡
,    𝑖𝑓 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝐿𝑒𝑣𝑒𝑙 < 3 𝑎𝑛𝑑 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 < 1.0 

𝑏

𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡
,    𝑖𝑓 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝐿𝑒𝑣𝑒𝑙 < 3 𝑎𝑛𝑑 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 ≥ 1.0

 

Combined solution 

Our final solution simply combines the two previously presented solutions by feeding the 
output of the saliency-based pre-processor as the input of the saliency-based encoder. 
Doing that, generated saliency data is used twice in the encoding process. Saliency-based 
pre-processor highlights important areas of each frame in order to implicitly improve their 
global coding efficiency modifying encoding decisions. Moreover, the saliency-based 
encoder specifically considers saliency data in rate control module, which explicitly allocates 
more bits for areas of interest. The goal of this solution is to improve the effect of both 
individual solutions in order to reduce even more bitrate while keeping the same perceived 
quality. 



        

EXPERIMENTS 

In this section, the performance of the proposed method is evaluated under different test 
conditions. To this end, a reference encoder setting is selected as the basis. On top of this 
encoder, the proposed saliency-based solutions are implemented and used for compression 
of a set of test sequences. Both objective and subjective evaluations are conducted. 

Encoder settings 

The base encoder for integration of the proposed methods is the Titan solution of ATEME, 
which contains different state-of-the-art codecs. For the experiments of this paper, the HEVC 
codec of the Titan has been used. Test sequences used in the experiments have been 
chosen to represent content diversity.  

Table 2 Selected sequences for the performance evaluation of the proposed method 
summarizes the sequences that are used in our experiments, with snapshots of their first 
frame along with their corresponding saliency map. As can be seen, the resolution of 
sequences is limited to 1080p, as this is a frequently used resolution in broadcast and 
streaming applications.  

Four configurations are possible: 

1. Baseline: Titan in default configuration 
2. Baseline + implicit saliency (pre-processing) 
3. Baseline + explicit saliency (encoder QP control) 
4. Baseline + combined implicit and explicit saliency 

 

Table 2 Selected sequences for the performance evaluation of the proposed method 

Sequence 
Signal 

description 

First  

frame 

Saliency  

map 

Baseline 

bitrate 

Basketball 
1920x1080p 

50Hz 
8 bit   

5523,5 Kb/s 

BQTerrace 
1920x1080p 

60Hz 
8 bit   

2514,4 Kb/s 

Cactus 
1920x1080p 

50Hz 
8 bit   

4153,5 Kb/s 

Extrait 
1920x1080p 

25Hz 
10 bit   

644,2 Kb/s 

Jaguar 
1920x1080p 

50Hz 
8 bit   

3984,8 Kb/s 



        

PGM1 
1920x1080p 

30Hz 
8 bit   

4985,7 Kb/s 

MarketPlace 
1920x1080p 

60Hz 
10 bit   

2287,7 Kb/s 

RitualDance 
1920x1080p 

60Hz 
10 bit   

8158,8 Kb/s 

Rugby 
1920x1080p 

50Hz 
10 bit   

4448,6 Kb/s 

Explorer 
1920x1080p 

50Hz 
10 bit   

6298,7 Kb/s 

 

Objective test 

The objective performance of the proposed solutions has been assessed, using Peak 
Signal-to-Noise Ratio (PSNR) and Video Multimethod Assessment Fusion (VMAF) as 
described by Netflix (40). Figure 2 shows the Rate-Quality curves of the corresponding 
metrics for one of the test sequences. As can be seen, compared to the baseline method 
(configuration 1), a moderate performance reduction is caused by the proposed combined 
method (configuration 4). This is not surprising as the proposed saliency-based solutions 
basically disrupt the internal process of the encoder, which optimizes the objective-based 
quality. In other words, the abovementioned objective loss is the cost of subjectively 
optimizing the encoder in order to maintain a higher quality for salient areas that are 
supposedly more attractive. As a conclusion, objective evaluation is useful to ensure that no 
dramatic damage has been caused but is not a relevant quality assessment. Therefore, a 
set of subjective tests has also been conducted. 

 

    
Figure 2 – Rate-Quality curves of BasketballDrive sequence, using PSNR and VMAF. 
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Subjective test 

Subjective tests have first been designed and performed by video experts. Encodings have 
been carried out in the constant quality mode, where an integer input parameter between 0 
and 255 defines desired quality level (the same parameter is used to control QP adaptation). 
The test sequences described in Table 2 have been encoded with all the configurations at 
five quality levels covering a target range of perceived quality levels and bitrates 
corresponding to conventional broadcast and streaming applications. These encodings 
allow the constitution of stream pairs suitable for visual comparison. Each pair is composed 
of the baseline and one of the other 3 configurations. The highest quality pairs have been 
discarded, as they cannot be discriminated visually. A selection of bitrates for the baselines 
is provided in Table 2. 

Visual inspection of the selected pairs led to the following conclusions: All configurations 
provide a bitrate gain at equivalent visual quality. The degradation of the quality on the non-
salient areas has been observed, as well as the improvement of important areas such as 
faces. The gain of the explicit method (configuration 3) is found to be higher than the gain 
of the implicit method (configuration 2). Finally, the gain of the combination (configuration 4) 
is found to be greater than the gain of the explicit method. In other words, the gains of the 
two methods are cumulative. 

In summary, the interest of the approach has been demonstrated. Saliency information is 
useful to enhance video coding performance. Moreover, implicit and explicit approaches are 
cumulative. To further validate this result, a formal subjective test has been conducted. Due 
to time and practical constraints, the test has been reduced to the implicit and explicit 
combination (configuration 4) versus baseline comparison. The pairs already selected for 
the first evaluation step have been used. 

The viewing sessions of the subjective tests followed the recommendation described in ITU-
T P.910 (39). This double stimulus methodology, called pair comparison, consists of a same 
sequence being presented first through one system under test, and then through another 
system. In our case, the two systems are HEVC encodings with and without the proposed 
method, respectively. A set of pairs, corresponding to same combinations under the two 
systems, are generated. A pair (A,B) represents a given combination of sequence and 
quality, that are encoded with the two encoder systems. Their perceived qualities are meant 
to be comparable. Given the pair (A,B), each subject is asked to make a decision between 
four options: Option 1) A is much better than B, option 2) A is better than B, option 3) B is 
better than A, and finally, option 4) B is much better than A. It is noteworthy that subjects 
are kept unaware of the details of the systems and the random order in which the two 
sequences of each pair are shown. The test has been conducted on 30 naïve subjects. 

PERFORMANCE ANALYSIS 

Figure 3 summarizes the results obtained from the subjective test. In this figure, the left y-
axis presents the average subjective score of the tested sequences with their confidence 
intervals. As can be seen, the average subjective score of the tested sequences indicates 
that the perceived quality of the videos encoded by the two systems were somewhat similar 
(i.e. Saliency = Baseline). Moreover, the green bars represented by the right y-axis of this 
figure demonstrate the amount of bit-rate saving that the proposed method can offer in the 
given subjective quality score. As can be seen, an average of 17% bit-rate reduction is 



        

achieved by the proposed method, whereas the perceived quality has remained almost 
unchanged. 

Figure 3: Subjective scores of the tested sequences as well as their bitrate saving in the 
given subjective quality level. 

 

The RitualDance sequence shows poorer results as the mean subjective score tends 
towards a baseline preference. This score is mainly due to the saliency prediction quality. 
Indeed, as it can be seen in Table 2, the man in the foreground is not detected by the 
saliency model, while it is an important area of the sequence. Therefore, the quality of this 
area is degraded and this loss in quality is perceived by several viewers. As this man is 
clearly distinguishable in the sequence, the saliency model failure can be explained by the 
strong light area present in the middle of each frame. This is a specific case that the model 
may not have seen during the training phase, and that can be improved using data 
augmentation techniques reproducing this kind of case. 

CONCLUSION 

In this paper, a saliency-based video coding framework is introduced. This framework 
proposes that internal modules of encoder treat regions of input video differently based on 
their likelihood of being attractive for viewers. To apply this concept, saliency maps of video 
frames are extracted using a CNN-based method. These maps are then fed to two modules 
of pre-processing and rate-control, in order to put more importance on salient regions and 
encode them accordingly. The subjective tests show that the proposed method can provide 
17% bit-rate saving on average to an HEVC codec while maintaining the same level of 
perceived quality. As a future track, one can design more adapted saliency map detection 
algorithms. Since the currently used network is designed to create saliency maps on single 
images, a video-specific network that detects salient zones of a frame based not only on the 
pixels of this frame but also on some video-specifics data (such as motion vectors) might be 
able to obtain more accurate saliency maps and thus improve the overall effect of our 



        

solution. Moreover, data augmentation techniques reproducing video-specific features such 
as blur or scale changes could improve saliency prediction accuracy. Finally, the saliency 
model could be combined with specific detection models such as people detection that are 
very frequently areas of interest. 
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