
        

THE (NON)SENSE OF ARTIFICIAL INTELLIGENCE IN REAL-
TIME VIDEO ENCODING 

J. De Cock 

Synamedia, Belgium 

ABSTRACT 

Thousands of articles have appeared over the last decade(s) claiming the 
benefits of AI and ML. Some of these are realistic, while others 
overpromise the potential benefits of ML techniques in a wide range of 
applications. So where are the real benefits, and where do our marketing 
departments cross the line into the realm of nonsense? And what about 
applications under stringent conditions, such as real-time (video) 
processing or encoding? How much of the net benefits do you keep once 
you take into account the computational overhead, latency and cost 
constraints? 

This article takes a stab at distinguishing reality from fiction, where we see 
the benefits, and how the tools provided by AI enhance our encoder 
toolbox. After settling on AI/ML terminology, we give an overview of the 
state-of-the-art in the domain of video encoding. Next, we present 
examples and counterexamples of techniques that have worked, along 
with approaches that benefit our line-up of encoders.  

 

INTRODUCTION 

It is not my intention in this article to repeat a comprehensive overview of artificial 
intelligence, machine learning, or (deep) neural networks. Excellent books and articles 
have been written in this context e.g. by ‘Sze et al (1)’ and ‘Ding et al (2)’, and new papers 
are published faster than they can be read. 

First of all, it’s helpful to get the terminology right. AI and ML are often used 
interchangeably. To avoid any confusion, we repeat the hierarchy of classes within 
Artificial Intelligence (AI). AI is the science and engineering of creating intelligent 
machines/programs. Within AI, machine learning (ML) has been defined as the field of 
study that gives computers the ability to learn without being explicitly programmed.  

Many different types of ML algorithms are available, each having their merits, including 
Decision Trees, Random Forest and Support Vector Machines. Given their performance 
on a wide variety of tasks, the focus has shifted towards brain-inspired ML techniques, in 
which neurons are used that can take signals as input, perform a computation on those 
signals, and generate an output signal. 

Neural networks (NNs) are the most common type of brain-inspired ML techniques, in 
which a neuron’s computation involves a weighted sum of the input values, after which a 
non-linear function is applied that generates an output only if the input crosses some 
threshold. Within the domain of neural networks, we find deep learning, in which the NNs 



        

have more than 3 layers, in which at least one layer is hidden. These so-called deep 
neural networks (DNNs) have become increasingly popular, and often contain dozens or 
even hundreds of (convolutional) layers. 

In general, we have seen an evolution from shallow networks using hand-crafted features 
as inputs towards “black box” deep neural networks with a multitude of convolutional filter 
layers. Especially for computer vision, using several convolutional layers seems to be very 
effective. It is tempting to expect the same evolution for video compression. 

THE COMPLEXITY OF DEEP LEARNING NETWORKS 

To set the expectations: despite all their potential, applying DNNs to video encoding, and 
hoping for magical jumps in compression performance to come out, simply does not 
happen. Either the resulting networks are too complex and require a lot of computational 
power – raising the cost of your solution; or they become very shallow, and the accuracy 
goes down. In that case, it might be more beneficial to stick with manually tailored 
heuristics in your established encoders. Hardware acceleration can work (but also raising 
the cost), but you lose the flexibility in deployment of your solution.  

In literature, the complexity of DNNs keeps increasing. Fortunately, more and more 
publications are focusing on, or at least mentioning, the complexity of ML. So, what is a 
good measure of the complexity of machine learning? A reference point that is used more 
and more is to express the complexity of these architectures by the number of multiply-
and-accumulate operations (MACs). These MACs can range from thousands to millions 
per second and are a good representation of the complexity (1). Even after hardware 
parallelization, a MAC remains a costly operation. 

As an example, state-of-the-art CNNs that have been submitted to the ImageNet challenge 
are listed in Table 1, ranging from LeNet to ResNet and VGG, mentioning the number of 
layers and total number of MACs needed. For the more recent networks, operation counts 
are typically expressed in GigaOps, highlighting the explosion in computational power 
needed. 

 

 LeNet AlexNet GoogLeNet ResNet-50 VGG-16 

# of convolutional layers 2 5 57 53 13 

Total weights 60k 61M 7M 25.5M 138M 

Total MACs 341k 724M 1.43G 3.9G 15.5G 

Table 1 – Overview of popular DNNs 

 

Even on powerful (and expensive) GPUs, inference time for these networks can go up to 
more than 100 ms for a single 1024x1024 image. Also, for these more recent networks, 
accuracy per parameter goes down, and the more oversized networks do not fully take 
advantage of their learning ability (‘Canziani et al (3)’). Although this just gives an 
indication of the complexity of modern-day DNNs, how much can video compression 
benefit from such deep networks? 



        

EVOLUTION AND COMPUTATIONAL COMPLEXITY OF VIDEO CODING 

Video coding has come a long way since the first digital compression systems in the 80s. 
From H.261 over MPEG-2 and H.263, we’re now in a multi-codec world of several 
compelling formats, including H.264/AVC, HEVC, VP9, AV1 and VVC (See e.g. ‘DeCock 
(4)’). Typically, the introduction of video standards has gone hand-in-hand with increases 
in resolution. In particular in the broadcast world, there is a close connection between the 
next step in resolution and new standards (e.g. H.264/AVC and HD, HEVC and UHD). The 
introduction of VVC is expected to go hand-in-hand with the adoption of 8K. 

Along with compression efficiency improvements, the complexity in video encoders and 
decoders has grown substantially. For real-time encoding, there are increasing challenges 
to process high-frame, high-resolution video in real-time with the latest standards. In real-
life systems, such as in broadcast or live ABR distribution, the cost of the system is a very 
important parameter to remain competitive. In general, AI techniques can bring benefits to 
make encoder providers more competitive. But, as seen above, the complexity of many 
networks is prohibitive to put into practice, leading to net disadvantages when applied to 
encoding. It is this trade-off that we’ll be exploring in the remainder of this paper, excluding 
some approaches from consideration, while discussing others that look promising. But as 
announced in the introduction, there is a gap between marketing promise and reality. 

MACHINE LEARNING IN VIDEO CODING 

Machine learning has been applied in image and video coding for multiple decades. In the 
late 80s, experiments were already ongoing with image compression based on multilayer 
perceptron (MLP) networks (‘Cottrell et al (5)’). In the 90s, work shifted towards random 
neural networks for image (‘Marsi et al (6)’, ‘Gelenbe and Sungur (7)’) and video (‘Cramer 
et al (8)’) compression. These publications focused on alternatives to then-current 
compression schemes such as JPEG and H.261, with comparable computational 
complexity. Although they offered reasonable performance, they never made it into the 
field and the focus shifted to standardized encoding solutions such as MPEG-2 and 
H.264/AVC.  

Since the early 2010s, machine learning work related to video coding has revived, and 
truly accelerated over the last years, leading to what you could describe as “deep 
schemes”, “deep tools” and “standard-compliant” work. It is almost impossible to provide 
an exhaustive overview of the work in this direction, as each of these topics are extremely 
hot research topics with new publications appearing daily. 

Deep schemes 

Deep compression schemes are a radically different approach for encoding, providing a 
complete end-to-end solution. They build on the concept of dimensionality reduction and 
auto-encoding, enabling automated learning and eliminating the need for hand-crafted 
features (‘Hinton et al (9)’). These auto-encoders have received growing attention over the 
last 5 years, with very promising results, especially in terms of perceptual quality. In ‘Chen 
et al (10)’, a CNN-based video compression framework (DeepCoder) was presented, with 
separate CNN networks for predictive and residual signals, after which scalar quantization 
and Huffman coding are applied. The authors obtained similar efficiency as x264 IPPP 
coding in terms of SSIM. No results on its computational requirements were mentioned 
though. Other work by ‘Ballé et al (11)’ has focused on end-to-end optimization and image 
compression, with potential to outperform formats such as JPEG and JPEG 2000 in terms 



        

of compression performance. ‘Chen et al (12)’ focuses on CNNs to model spatio-temporal 
coherence to perform predictive coding, approaching the compression performance of 
H.264/AVC. But, overall computational complexity was reported to be 141x that of the 
H.264/AVC reference software (JM). ‘Lu et al (13)’ presented an end-to-end deep video 
compression network, with a complexity of about 11M parameters, reaching about 24 fps 
for CIF-sized videos. 

In (2), an overview is given of end-to-end neural video coding solutions, along with case 
studies. It is clear though that these “deep schemes” are not ready for prime time in real-
time video, and that they lack a standardized solution before they would be widely 
deployed. 

Deep tools 

Closer to existing standards is the work on so-called “deep tools” or “modularized neural 
video coding” (2), in which encoder tools are replaced by learned algorithms. Encoder 
tools are traditionally hand-designed and tweaked by engineers active in the 
standardization process. By learning, solutions can be found that can better adjust to the 
type of content, or that better exploit spatio-temporal coherence. 

Over the last years, we’ve seen learned algorithm proposals for intra prediction, e.g. ‘Cui 
et al (14)’, where small gains were reported compared to HEVC reference software. ‘Li et 
al (15)’ mentions 1.1% bitrate savings at a cost of 148% and 290% relative to the HM 
encoding and decoding software, respectively. Complementary HEVC intra prediction 
modes were proposed in ‘Pfaff et al (16)’, which explicitly mentions the high cost in terms 
of multiplications, which grows with the block size (from 20 multiplications per pixel for 4x4 
blocks to 132 multiplications per pixel for 32x32 blocks). 

For temporal prediction, ‘Liu et al (17)’ present a fractional interpolation method based on 
a grouped variation convolutional neural network (GVCNN). This gives bitrate savings of 
2.2% on average, but with encoder/decoder times of 6x and 1500x, again relative to 
reference software. Alternative schemes have been proposed, e.g., to predict texture 
without sending motion information between encoder and decoder (‘Choi and Bajić (18)’). 
Encoder time is 1.5x, while decoder time is more than 100x.  

Standardization efforts 

Currently, standardization efforts are on their way to bring ML tools into real-life. An activity 
in JPEG has been started (JPEG AI) to kick off explorations in the direction of learning-
based encoding. Also, in MPEG/JVET there is a tendency towards using AI in video 
compression schemes. In the past JVET meetings, several contributions have been 
submitted in this direction, and an AHG was established with the goal of developing a 
potential VVC extension supporting learning-based coding tools (‘Liu et al (19)’). Tools that 
have been discussed in this AHG include intra prediction, in-loop filtering, post-processing, 
and super-resolution. Similar work is ongoing within the Alliance for Open Media, for 
improvements in the context of AV1 and AV2. 

On the downside, many of these tools are again very complex. On the positive side, 
attention is paid to the complexity by optimizing the networks. In the JVET AHG, it is a 
requirement to mention the number of MACs per pixel. For many of these tools though, 
decoding time compared to VVC reference software goes up by two or three orders of 
magnitude, and more work is needed to reduce complexity to acceptable levels. 



        

Work compliant with existing standards 

Part of the more recent research has focused on improving and accelerating video 
encoding in a normative way (i.e., without modifying existing standards or tools). Starting 
with the introduction of HEVC, plenty of research can be found that tries to reduce encoder 
complexity. As an example, “data mining” approaches were applied, resulting in decision 
trees to reduce computational complexity of HEVC encoding (‘Correa et al (20)’). In ‘Xu et 
al (21)’, both a CNN-based and LSTM-based model are introduced to accelerate quadtree 
partitioning for intra and inter coding in HEVC. Still, the first model needs a total of 1.5M 
multiplications and additions, while the second requires about 760K. Although these 
models lead to reductions of 60-70% of encoding time compared to reference software, 
they are orders of magnitude too high for practical implementations. 

Recently, worked has shifted towards acceleration of VP9 (‘Paul et al (22)’), AV1 (‘Chiang 
et al (23)’) and VVC (‘Tang et al (24)’, ‘Zhao et al (25)’) encoding. The smallest model in 
(22) used about 26K trainable parameters, requiring about 10M floating point operations 
per 64x64 superblock. While this results in speed-ups compared to VOD-type-settings, it is 
much harder to justify this number of operations for real-time encoding. 

Pre- and post-processing 

DNNs have been shown to be extremely powerful for (pre-)filtering applications. A range of 
publications have been written on pre-filtering techniques including sharpening, denoising, 
contrast enhancement, motion deblurring, and edge detection. A different approach 
focuses on video content semantics to assist in video encoding, such as object detection / 
segmentation, saliency prediction etc. More forward-looking are analysis-synthesis 
techniques that are more closely aligned to how e.g. texture is perceived by the human 
visual system. A texture-based video coding approach is presented in (2), along with its 
open issues, such as the accuracy of the analysis. 

A promising direction for some time has been on super-resolution, where input videos are 
downsampled before encoding, after which the reconstructed frames are upsampled again 
at the receiver. These approaches can save bits at acceptable complexity requirements 
(see ‘Yang et al (26)’ for an overview). The benefit of these approaches is that they can 
work in a standard-compliant way, without modifications to the underlying encoders or 
infrastructure. A downside is that the super-resolution upscaling algorithms need to be 
applied at the receiver side, making not all (legacy) clients suitable for this type of 
distribution. 

Complexity considerations 

As stated in (2), “All of these issues present serious barriers to the market adoption of 
DNN-based tools, particularly on energy-efficient mobile platforms. One promising solution 
is to design specialized hardware for the acceleration of DNN algorithms”. And according 
to ‘Liu et al (27)’, “Comparing the existing deep tools with their counterparts in the 
traditional non-deep schemes, one may easily notice that the computational complexity of 
the former is much higher than the latter. High complexity is indeed a general issue of 
deep learning, and a critical issue that hinders the adoption of deep networks in scenarios 
of limited computing resource, e.g. mobile phones.” 

Despite all their potential, we’re still far off from applying these schemes and tools in real-
time encoders. While plenty of research and engineering has been spent on accelerating 
traditional decision making in encoders, there is a lot of work needed towards accelerating 



        

DNN-based encoder decision making. Throwing in a GPU or parallel hardware does not 
resolve the situation, since it results in a very expensive solution, which is a multiple of 
currently deployed software on generic CPUs. It is a good evolution that in more and more 
publications the complexity of networks is explicitly mentioned, seeing how far we are still 
away from practical deployment for many networks. 

SO WHY ISN’T THIS WORKING (YET)? 

Theory vs practice 

For most of the publications described above, significant improvements were reported, 
with impressive speed gains compared to the open-source reference software. As we all 
know though, these reference code bases are far from optimized, with speeds expressed 
in “seconds per frame” rather than “frames per second”. It is easy to demonstrate speed-
ups relative to these code bases, but it becomes way harder when compared to optimized 
encoders that have been tuned by experts, optimized with intrinsics and that operate at 
high frame rates and resolutions in real-time. 

Arguably, it makes sense that academic publications focus on comparison with reference 
software, since these are established points of reference, as they have been for years. 
Still, the danger of this practice is that the complexity of the reference software and non-
real-time encoders hides the complexity of the machine learning networks used in these 
papers, hence over-promising their potential. As a result, applying these as such to 
practical encoders leads to limited gains. Techniques to simplify and optimize encoders 
are well-known in the industry. Accelerating repetitive MAC operations in DNNs on the 
other hand is limited by capabilities of hardware, parallelization options and memory 
access. Even though accelerators are available, more time and effort need to be spent on 
the (co-)design of smart networks for real-time processing. 

Constraints of real-time video 

It is important to make a distinction between training effort and inference effort. It is 
primarily the latter that we’re focusing on, while the training phase can be orders of 
magnitude more expensive. The focus and target in this paper is on real-time inference for 
video encoding and processing, that is widely deployable, preferably on generic CPUs. In 
that way, you can reach deployment on any platform, including on the widest selection of 
cloud instances. 

There is of course a difference between offline encoding for VOD services, and encoding 
for live video (broadcast, live events, live ABR, web conferencing for example). For the 
former, more effort and compute cycles can be spent to encode and prepare episodes and 
movies. This is an encode-once, decode-millions-of-times scenario, and it is ok to spend 
hours per encode if necessary.  

For real-time encoding, millions of decisions have to be made every second, and compute 
capacity is limited, leading to optimization in a three-dimensional rate-quality-complexity 
space. For live deployments, you also want to limit the financial cost. Any increase in 
complexity has to be justified – adding a GPU to the system can quickly escalate the cost 
of your server and hurt your competitiveness. HW/SW interaction can also complicate 
interaction and transfers between processes, and complicate the implementation. Moving 
purely to hardware can limit the flexibility and features that can be supported in your video 
pipeline. With HW implementations, there is limited space for VQ improvements and 



        

innovation cycles slow down. All of these will influence the decision to move towards 
(partial) HW implementations, or to stay fully focused on software. 

ACCELERATING NEURAL NETWORKS 

It’s clear that the networks described above cannot be applied as such as in real-time 
systems with acceptable cost. What has been done to simplify NNs so far, or to make their 
potential more accessible? 

Hardware acceleration 

Fortunately, we have seen several efforts to enable inference in real-time on deep learning 
accelerators, e.g. research chips such as Stanford’s EIE and TETRIS chips; the work by 
Chen et al. at MIT on the Eyeriss reconfigurable DNN accelerator; and the DianNao series 
of research chips. ‘Reuther et al (28)’ give an overview with a distinction between research 
chips, very low power chips, embedded chips, data center chips and autonomous systems 
currently in development or use.  

Although these accelerators will certainly help in dedicated use cases, we want to deploy 
our encoders as broadly as possible. For common CPUs, approaches such as TensorFlow 
Lite can also help in efficiently deploying models, as can efficient instruction sets such as 
VNNI instructions on AVX-512. 

Co-design 

In general, co-design of DNN models and hardware (1) will help in making these models 
more accessible, by using a combination of the following: 

- Network quantization. In many cases, floating-point accuracy is overkill for DNNs. By 
reducing precision of operations and operands, and by representing floating-point 
weights and/or activations with fewer bits, network calculations can be accelerated. A 
trade-off then needs to be found between acceleration and network accuracy. This is in 
line with what e.g. Intel is doing by providing conversion software from 32-bit floating 
point precision. Academic work in this direction is found in e.g. ‘Zhang et al (29)’, where 
a method was proposed to quantize both the weights and activations to arbitrary bit-
widths. (1) summarizes different techniques to reduce prediction along with accuracy 
loss compared to 32-bit float operations.  

- Compact network design can be achieved by reducing the number of operations and 
model size. This can be done by exploiting activation statistics (for zero or low-valued 
activations), or by network pruning (setting redundant weights to zero). The latter builds 
on early work in ‘Le Cun et al (30)’. More recent applications are described in e.g. ‘Li et 
al (31)’.  

TinyML 

The co-design described in the previous section is aligned with the goals of “TinyML”, a 
field which targets hardware, algorithms and software capable of performing on-device 
(sensor) data analytics at extremely low power. As described by ‘Verhelst and Moons (32)', 
“the combination of pruning, weight sharing, and Huffman compression compresses state-
of-the-art networks by 50 times in memory size”. It is indeed necessary to reduce the 
complexity of deep networks by several orders of magnitude to allow their implementation 
on low-power devices. 



        

In the end, the complexity that we’re searching for in video encoders, is similar to networks 
that this research is trying to accomplish on low-power devices. Within a video encoder, 
many networks can run in parallel to make thousands of decisions per second. Each of 
these networks is allowed to only occupy a small part of the overall power of the CPU. 

Interpretability: back to feature engineering 

In the beginning years of machine learning, research focused on features to feed into 
neural networks. Later, black-box-type models were introduced that gave more flexibility, 
but also higher complexity. Recently, the ability to interpret what a model has learned is 
receiving an increasing amount of attention (‘Murdoch et al (33)’). Among the 
interpretability methods, domain-based and model-based feature engineering are 
presented. Domain/expert knowledge and insights help to identify features that are domain 
specific and help interpretation,  

Recent papers have focused on interpretability of CNNs for video coding (‘Murn et al 
(34)’). This approach tries to reduce the complexity of CNNs by interpreting the learned 
parameters to build simpler models. As stated in (34), interpreting and understanding 
relationships learned by the network enables the derivation of streamlined, less complex 
algorithms which achieve simpler performance to the original models. 

SO, WHAT DOES WORK? 

Fortunately, it is not all bad news, and the trend toward simplification is leading to good 
examples of what can be achieved with ML, in a trade-off between accuracy and 
computational complexity. Although most of the deep networks presented in literature and 
described above cannot be applied as such in a real-time encoding workflow at acceptable 
cost, we do see benefits in the following areas in the near future. 

Optimized encoder decisions 

Given the huge search space, encoder decisions are good candidates for speed-up. A 
number of techniques have already been mentioned above, some of which only work on 
reference software. But, more shallow neural networks have the potential to provide a 
good trade-off between complexity and accuracy. In particular the more recent formats 
such as HEVC, AV1 and VVC will benefit most of NN-based acceleration, given their many 
degrees of freedom. Promising work has been published in the following directions, among 
others: 

- Intra prediction. The work by ‘Santamaria et al (35)’ presents NN-based intra prediction 
modes along with simplifications that lead to multiplications in the order of 100s up to 
10,000s for 16x16 blocks. This builds on the work of (16), and an interpretation 
analysis is run to come to simpler, explainable predictors that are easy to implement. 
The result is NN-based modes that are much closer to real-life usage.  

- Inter Prediction. Although much of the recent work has focused on NNs, other ML 
techniques such as Decision Trees prove to be efficient ways to optimize encoder 
decisions, as in ‘Kim et al (36)’, where inter prediction is accelerated for AV1. 

- Mode decision. ‘Liu et al (37)’ presented a CNN-based CU partition size decision with a 
reasonable complexity of 3,000 MACs, along with a hardware implementation. 



        

- Transform selection. The transform search for AV1 is accelerated in ‘Su et al (38)’, 
based on a neural network with one hidden layer. For transform kernel prediction, two 
shallow networks are used which are combined into a score for the 2D transform. 

The message from these papers, along with our findings, are that fairly simple neural 
networks can produce accurate results, and at acceptable computational complexity. 

Video quality measurement 

Several metrics have been introduced that are trained based on neural networks, for 
example to predict PSNR, SSIM, subjective scores or for QoE monitoring. The popular 
VMAF metric was trained based on Support Vector Machine regression. Still, such metrics 
can be very complex, making it challenging to calculate them in real-time, or deep inside 
the encoder. It is however possible to approximate these metrics based on low-complexity 
networks and features, as described in ‘Barman et al (39)’. 

Real-time encoding in practice 

Rate control is one of the algorithms in real-time encoders that can truly make a difference 
in video quality. Rate control determines how to optimally allocate bits between GOPs, 
frames and blocks within a frame, hereby maximizing visual quality. For frame-level rate 
control, we have seen promising improvements in estimation accuracy, that make rate 
control more adaptive to different types of content, and helping eliminate misprediction in 
case of outliers, e.g. rapid transitions between easy and difficult types of content.  

In ‘Li et al (40)’, a CNN is used to predict the Lagrange multiplier, leading to more accurate 
rate control. Saliency-based encoding is a promising way to direct bits to where they 
matter most. In ‘Lyudvichenko et al (41)’, the saliency maps are fed into the x264 encoder, 
to assist its rate control. Importance maps such as in ‘Li et al (42)’ can further help 
adaptive quantization. 

In the broadcast world, statistical multiplexing algorithms provide a powerful way to fully 
utilize the available bandwidth for a bundle of channels. ML-based complexity estimation 
can help to allocate bitrate to different channels. For VOD applications, ML helps to 
optimize video quality in a content-adaptive way. By including low-complexity video quality 
measurement, VQ can be steered in a real-time fashion, leading to decisions optimized 
down to shot level. 

Throttling helps to automatically adjust the complexity of the encoder depending on the 
available resources on the server. When the CPU load goes up, the encoder can scale the 
search operations down. In extreme cases, this could have an impact on VQ. Throttling 
can be assisted by ML operations to find an optimal balance between CPU load, encoder 
decisions and VQ, resulting in more robust encoders. 

CONCLUSIONS 

Machine learning techniques have made substantial jumps forward over the last decades. 
As a side-effect, also the complexity has grown manifold. Although deep neural networks 
can provide excellent accuracy for a variety of tasks, they come with substantial 
computational, and hence financial cost. To cope with this cost, there are tendencies 
toward simplification, efficient co-design and hardware acceleration for DNN inference 
networks.  



        

Video compression, in particular real-time encoding, poses challenges for any platform. 
Millions of pixels, and thousands of decisions have to be processed every second. A trade-
off needs to be made between handcrafted techniques and deep networks that hide some 
of the ‘interpretability’. Unfortunately, many of the techniques described in literature only 
perform well on very complex encoders, such as poorly optimized reference software. 
Once you apply these to fast encoders, the true complexity of these DNNs becomes 
apparent.  

It is clear that more work is needed to make these approaches more accessible, and at a 
cost that is close to what can be achieved with expert-tuned heuristics. At least some good 
examples can be found, but more publications need to be explicit about the applicability 
and focus on computational complexity. Nonetheless, good examples can be found of 
where ML can be applied in real-time video encoding, leading to faster, more adaptive and 
robust encoders. 
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