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ABSTRACT 

In this paper we focus on the machine learning approach we have 
developed for automatic audio source recognition and mixing for the UK 
DCMS funded collaborative project called 5G Edge-XR.  Leveraging GPU 
acceleration, we deployed innovative algorithms in the cloud so that content 
can be automatically mixed on-the-fly for a personalised, immersive and 
interactive experience for audiences. In particular we will describe the 
algorithms involved, the system architecture and how it has been 
implemented for immersive live boxing and also how we are using it to 
enhance a live in-stadium experience.  

 

INTRODUCTION 

In this paper we present work being carried out in the UK DCMS funded, 5G Edge-XR 
project. The project is led by BT and is a collaboration between several SMEs, The 
University of Bristol and a Dance school in the UK. The project is exploring how a 
combination of 5G connectivity and a GPU cloud capability at the network edge can affect 
the delivery and experience of immersive experiences including those based on augmented, 
virtual and mixed reality – collectively ‘XR experiences’, to consumer devices including 
headsets, smart glasses, phones and tablets. The project includes a particular focus on real-
time experiences where the viewers can change the content viewpoint freely on an AR 
headset with the rendering being done live, in real-time in the cloud and delivered to the 
end-user over a 5G network. 

The AV content used will depend on the use-case but will be made up of volumetric video, 
broadcast production content and additional data and video feeds which the user has control 
over the rendering of. Traditionally, it would not be possible to facilitate these experiences 
for the end-user without viewers having a fast internet connection and a powerful GPU 
capability in their consumer devices with the compute power to drive the bespoke audio and 
visual representation. In 5G Edge-XR we are exploring the use of 5G networks for the 
provision of high the bandwidth links required to send the live AV components to a cloud-
based GPU capability at the network edge which performs computation and rendering in 
order to deliver the live personalised content to the end-user device over the 5G network. 

This paper focuses on the audio system of the project and in particular the machine learning 
approach for automatic audio source recognition/extraction, composition and mixing. 
Leveraging GPU acceleration, we have deployed these innovative algorithms in the cloud 
so that content can be automatically mixed on-the-fly for personalised, immersive and 
interactive experience for audiences. The paper is structured as follows. We will begin by 
outlining the 5G Edge-XR project, its motivation, technical features, architecture and use 



        

cases and proceed to discuss the (object-based) audio system in more detail, highlighting 
in particular the AI-driven audio source analysis, extraction and composition engine. Next, 
we will describe how the audio scene can be rendered in the Unity gaming engine to match 
the visual presentation and finish up with a discussion on the project outlook and 
conclusions. 

5G EDGE XR PROJECT 

5G Edge-XR will demonstrate that 5G networks, coupled with cloud graphics processing 
units, will enable users to view sporting events from every angle in a totally immersive 
experience. These experiences will be available on a range of devices including 
smartphones, tablets, AR and VR headsets and TVs. This approach will underscore the 
vision and potential of 5G networks and how it can transform content composition and 
delivery, bringing new experiences to many sectors 

Project/system architecture 

The end-to-end chain of the experiences in the 5G Edge-XR project can be represented as 
in Figure 1 below. Assets are generated, possibly in real-time from cameras and 
microphones, and are encoded and uploaded to the GPU processing system. The processor 
renders the assets into a scene and generates, using knowledge of the pose and orientation 
of the client device, a view onto that scene and renders both visual and audio streams to 
represent the view from that position. In this configuration the requirements of the client 
device are relatively simple; they are required to present pose and orientation requirements 
to the GPU processing and to be able to decode and present an AV signal. The client enjoys 
the privilege of then being able to choose from which to view the rendered scene. 

 

Figure 1 – End to end chain simplifying and generalising the process by which the scene 
the end user views and hears is generated. 

The logical and physical location of the GPU affects the end-to-end delay budget. Internet 
based cloud resources typically add 20-30ms to the round-trip time. Thus, siting the GPU at 
the logical edge of the network (see Figure 2), prior to exiting the network via a peering node, 
we hope to reduce the end-to-end delay and expect this to result in a better, more responsive 
user experience. 

 

Figure 2 – Simplified network routing between the mobile device and the GPU cluster from 
where the experience is streamed, with associated estimated round-trip delays.  



        

In some use cases the scene generated may be a near real-time render of a volumetric 
capture.  In this work we are using a dance lesson and a boxing match as exemplar scenes 
that are being observed and captured volumetrically. In time, as the technology evolves the 
size of the scene captured may increase to include a whole theatre stage, a television studio, 
a tennis court or even football or rugby pitch.  

Volumetric captures generate huge amounts of data, from cameras and depth sensors 
which must be analysed and encoded as point clouds and textures which are transmitted to 
the GPU cluster to be rendered, frame by frame, into a photorealistic hologram. The real-
time challenge is to generate a virtual camera view onto the rendered scene which is 
sufficiently similar to the image formed from a real camera placed at the same position as 
the virtual camera within the scene. Achieving that structural similarity requires complex 
calculations well suited to GPUs, including real-time rendering, AI and deep learning to 
improve encoding methods. 

Alongside the development of the visual point-of-view, another challenge, as discussed in 
this paper, is the task of generating a soundscape appropriate to the position and content of 
the virtual camera. 

Use cases 

There will be several use cases that will be demonstrated as part of this project. For the 
purpose of this paper, we will discuss only the boxing and in-stadium demonstrations. 

Boxing 

The boxing use case involves the generation of a photo realistic hologram which, using AR, 
may appear to be situated on viewers’ coffee tables. This is powered by the volumetric video 
capture and composition by project partner, Condense Reality. In the concept it will be 
possible to observe the action from any angle, on smartphones, tablets and AR headsets. 
The presentation will be synchronised with the live TV Broadcast feed and will contain 
interactive elements allowing the viewer to personalise their presentation. For example, they 
may include the ability to select a 
replay from a list of replays or to 
interact with graphics to provide more 
information - for example to choose 
whether or not to include data panels 
providing real-time information about 
the bout and the pugilists etc. 

In the concept being built, the 
experience will be editorially driven 
with commentary and automatic 
replays. Because viewers can walk 
around the hologram that appears on 
the coffee table it is obvious that the 
audio must change to match the 
changing perspective of the viewer. The viewers will experience an audio ‘bed’ with the main 
(background) audio feed but as they add/remove content and navigate within the scene they 
will also have overlaid a bespoke audio feed which will match the visual representation. For 
example, we will isolate each audio source and localise it to the correct place in the scene 
so that the sound of each punch and shout of each trainer can be panned to the correct 
location relative to the viewing angle of each viewer. The challenge from an audio 

 

Figure 3 – 5G Edge-XR boxing use case concept 

 



        

perspective therefore is to be able to extract each sound source/object and localise it in 
space in real-time within a noisy environment. As described later in this paper, we have 
approached this challenge using a real-time deep-learning technique based on the raw input 
audio. In addition, we will be leveraging the power of the cloud to perform speech-to-text 
and other metadata extraction routines to drive more content and personalisation for 
viewers. 

In-stadium 

Typically, there are over 700,000 fans attending stadiums for English football matches every 
week in the UK and as a result there is a drive by many clubs to reimagine and improve the 
perceived value of a matchday ticket. An important part of this is the use of appropriate 
technology to enhance the experience by providing unique access to in-stadium content an 
enable fans to get an enhanced/improved in-stadium experience. New content is also a way 
of mobile service/content providers promoting themselves above the competition.   

The in-stadium, use case will hence 
demonstrate an AR football 
experience for sports fans within 
stadia. Again, viewable on AR 
headsets, phones or tablets, viewers 
will have the option to have stats/data 
overlaid onto the scene they can see.  
This may include player names, 
virtual off-side guides, gain lines, 
refereeing decisions etc. Also 
available will be text overlays 
synchronised to the commentary, 
replays shown on virtual jumbotron 
screen, video from other camera 
viewpoints and alternative partisan commentaries. Our audio engine will be used again to 
segment and analyse the audio feeds to drive graphics overlays and additional content. For 
example, we use the sound of the referee’s whistle for accurate localisation and trigger a 3D 
speech bubble of their communications locked to their location for improved accessibility, 
additionally on-pitch sounds can be isolated and panned to the correct position relative to 
the viewer to bring the fans closer to the action 

Other project use case 

XR technologies have potential applications in almost all industries including engineering 

and architecture, live performance, medical imaging, education and retail.  Use cases 

addressing some of these additional deployments will be explored within the 5G Edge-XR 

project. 

Getting content to the edge 

As with any cloud-based or remote live production a key element is the ability to get the 
captured content up to the cloud in an efficient manner with all content clocked and synced 
correctly. The 5G Edge-XR project will be using a 5G contribution network with the raw 
microphone signals sent to the edge directly. We will be using DANTE capture devices on 
premises with DANTE Domain Manager managing the network and a DANTE virtual Sound 

 

Figure 4 – 5G Edge-XR in-stadium use case 
concept 

 

 



        

card running on the server to pull the audio feeds in to the edge compute where the audio 
processing will be done as described in subsequent sections of this paper.  

OBJECT-BASED AUDIO 

One of the biggest challenges for the 5G Edge-XR project and other similar technologies is 

how to capture the scene in such a way that as much content and information about the 

content is preserved as possible while retaining well established broadcast production 

workflows. In addition to the audio content being captured, it is imperative that substantial 

metadata describing the content is also captured or extracted from the scene to enable 

correct, bespoke rendering at the user end. Consequently, the adoption of an object-based 

audio paradigm to be able to facilitate requisite personalised, immersive audio. An object-

based paradigm is fundamentally different to traditional channel-based approaches as 

instead of mixing audio content for a target system, the audio components and descriptive 

metadata are retained as discrete assets right through the production chain for bespoke 

rendering at the user end. 

Channel-based systems mix the audio content for a specific audio output format (stereo, 5.1 
etc) using the available audio sources at the capture end. Once this content has been mixed 
it is not possible to manipulate it or personalise it at a later stage as all of the components 
have been ‘baked in’ to the audio content stream. An object-based paradigm differs in that 
the individual elements are composed at the capture end but are kept separate right through 
the broadcast/signal chain so at any point, sources can be added, moved or manipulated 
right up until the point of rendering. This has several advantages, both in terms of a format 
agnostic audio rendering (i.e., it can be played back over any output system) and also in 
that it enables sounds to be added, removed, altered or panned around etc., for personalised 
rendering. It is hence apparent that to enable adaptive and personalised rendering for the 
5G Edge-XR project an object-based paradigm is essential. Fundamental to an object-based 
system are the ‘audio objects’ that we will define here as the discrete sounds in the scene, 
usually rendered at a specific point in space, and the ambient beds which make up the 
immersive background sound on to which the audio objects are overlaid. 

Audio objects 

In any audio scene there will be many discrete sound sources that can be described as 
coming from a specific location and that will have defined audio characteristics. Such ‘point’ 
type sources can be defined as audio objects. The term ‘audio object’ is also used to 
describe any audio asset that can be added or removed from a sound scene/composition. 
This might include the sound of a racket strike in tennis, the microphone feed of the umpire, 
the commentator and the PA for instance. Audio objects are typically discrete audio sources 
with accompanying metadata describing their location, type, duration and other 
attributes/signal statistics. Describing the audio scene in this way and keeping the assets 
separate right up until the end user, means that the end-user has full control of their audio 
mix and are able to add/remove/reposition and interact with any aspect of the mix (within 
the bounds allowed by the broadcaster). 

Ambient ‘beds’ 

Aside from the discrete sound source/objects that are in a scene there is also the 
ambient/background sound that needs to be captured in a spatial sense such that a faithful 
reproduction of the scene can be rendered for the end user. It may be that there are several 
ambient beds that are used to describe and audio scene and confusingly these can even be 



        

referred as ‘objects’ that can be interchanged/mixed together if necessary. For example, in 
a sports context there may be a base crowd sound, a home crowd sound and an away crowd 
sound and a user could have a choice over the feeds they add in to their final mix.  

There are different approaches to capturing the ambient bed on to which the audio objects 
can be superimposed. It is possible to have a bed consisting of a 5.1 capture for example, 
or more complex descriptions of the overall sound scene can be included, utilising 
technologies such as ambisonics [Gerzon (1)] which is a means of describing an audio 
scene in terms of its spherical harmonic components such that the scene can be efficiently 
captured, transmitted and then decoded for reproduction. The more recent introduction of 
higher order ambisonics (HOA) brings increased spatial resolution to the format [Bertet (2)] 
and is the preferred audio format for several popular 360° video platforms. Interaction within 

an ambisonics scene is generally limited to rotation and, to some extent, zoom. For this 
project we have adopted a second order ambisonics capture for the bed. 

Metadata 

The audio system for the 5G Edge-XR project requires that the audio objects and sound 
field/bed descriptions are not only captured with a high level of accuracy but that the 
rendering be done on-the-fly, matching the viewer’s perspective of the scene. An important 
part of the system therefore is the metadata accompanying the audio data which will 
describe the scene and will be fed right through to the rendering engine to enable the 
manipulation of the audio output to match what the viewer is seeing in real-time. Perhaps 
the most important aspect of this metadata for immersive applications is the location of each 
audio object which has to be determined and in many cases is non-trivial as sounds cannot 
always be tracked and there are often high levels of background noise at e.g., live sports 
events. 

S-ADM Stream 

Once the requisite metadata parameters have be extracted from the scene, a stream needs 
to be composed that is linked with the audio components so the render can use the 
information to compose the final sound stage at the user end. The chosen metadata format 
for this project is the Audio Definition Model (ADM) (3). ADM is an ITU-R BS.2076-2 
metadata specification that can be used to describe object-based audio, scene-based audio 
and channel-based audio. ADM allows the description of many audio and scene aspects 
such as the position, time and type of audio source as well as the input and output audio 
formats. It can even be included in BWF WAVE files or used as a streaming format in 
production environments so fits the purpose of the project very well. The ADM model is 
divided into two sections, the content part, and the format part. The content part describes 
what is contained in the audio, so will describe things like the language of any dialogue, the 
loudness, location and so on. The format part describes the technical nature of the audio so 
it can be decoded or rendered correctly. Some of the format elements may be defined before 
having any audio signals, whereas the content parts can usually only be completed after the 
signals have been generated. The content elements can edited/ authored at any point in the 
production chain. 

In order to facilitate the real-time aspects, we will use serialised ADM (S-ADM) (4) as it is 
extremely versatile and well suited for object-based audio content. S-ADM sends 
consecutive ADM data frames, updating any changes in the audio scene from one frame to 
the next. Reading these ADM frames into the system in real-time enables the dynamic 
manipulation of the audio sources to match any type of control system, whether that be 



        

automatic from the user’s headtracking or manually via an audio scene authoring tool. S-
ADM allows us to adapt the audio scene and rendering in real-time for a personalised, 
immersive rendering for all users and so has been chosen as the metadata format for this 
project. 

THE AUDIO SYSTEM  

In the past, real-time audio processing in the cloud has been difficult due to bandwidth 
limitations. These limitations could be somewhat reduced by compressing the audio; 
however, this is not possible if the processing is part of the main signal path due to the loss 
in audio quality that comes with many compression techniques. A method of bypassing 
these limitations, often used in mixing, is to keep audio processing local but to have an 
application that interacts and controls the processing through the cloud. A 5G network 
greatly improves the amount of bandwidth available to such a point that transmitting multi-
channel uncompressed audio into the cloud is possible.  

The 5G Edge-XR audio system architecture is shown in Figure 5. The raw microphones are 
ingested at the event and are uploaded to the cloud/edge over the DANTE contribution 
network. Through the Dante virtual soundcard, these microphone feeds are input into the 
audio event extractor and semantic analysis engine which compiles an audio scene 
consisting of the objects, beds and associated metadata. The metadata stream and audio 
mix can be manipulated with the remote GUI and/or the broadcast mixing console. In 
addition, there we are running semantic analysis on some of the audio streams/objects to 
generate more metadata that can be used later on in the signal chain to drive the end-user 
experience. The metadata in the system can be edited by any of the processing/input blocks 
including the volumetric video capture which can update and add key positional data. The 
audio content is then synced with the video stream and the objects, sound field beds and S-
ADM stream are fed into the Unity game engine for scene compilation. The Unity scene sits 
in the cloud and when clients connect to the server, they are delivered a bespoke audio and 
video representation to match their perspective and preferences. 

 

Figure 5 – 5G Edge-XR audio system diagram 

 

 



        

AUTOMATIC AUDIO PRODUCTION IN THE CLOUD USING AI 

Traditionally, the mixing would be done on the premises and an output mix will be created 
in an OB truck for a given output format/target system. For the 5G Edge-XR project, the AI-
driven mixing engine has been ported from the premises to the cloud. One of the benefits of 
running the audio analysis, processing and mixing in the cloud is that the processor power 
can be greatly increased with GPU acceleration. This increases what can be done with audio 
analysis and can enable more complex processing tasks like real-time audio object 
extraction, localisation and semantic analysis on the incoming streams. Furthermore, the 
cloud-based audio mix engine enables automated content composition for different 
audiences. 

Extracting Sound Sources 

Capturing a scene in an object-based way presents some challenges and requires some 
alterations in the way that content is created/mixed to ensure that the individual sounds at 
an event e.g., the sound of a punch in boxing, the racket strike in tennis or the sound of a 
ball being kicked etc. are detected and extracted as separate sources. The way that this is 
done at the capture end depends somewhat upon the context and the audio extraction 
techniques will vary accordingly. Fundamentally however we employ machine learning 
techniques that analyse various representations of the audio signal to learn complex 
patterns that allow them to detect when specific audio events occur. The audio signal 
representations used are also context dependent since audio events have different 
characteristics which are presented through a range of features. The selection of these 
features is based upon which ones will show the most differences between the event and 
any other audio. This will help the AI pick up on patterns which will ultimately improve its 

detection.  

An overview of our AI approach to audio capture and extraction is shown in Figure 6. Audio 
templates are derived based on perceptual models of the salient sound sources in the 
current context and a neural network trained on content from the same context enables very 
accurate detection and classification of the audio events of interest in real-time. If several 
microphones capture the same audio event, the signals are triangulated using an efficient 
optimization algorithm, creating positional metadata to help automatically facilitate spatial 
and immersive mixes.  

 

Figure 6 – AI system overview diagram 

 

 

 



        

 

Figure 7 – Example convolutional audio network diagram 

Figure 7 shows an example convolutional neural network model used for detecting highly 
transient audio events, such as punches in a boxing match. Here, a Mel spectrogram is used 
as the representation of the audio data. The neural network is fed eight consecutive 
spectrograms that were created from FFT windows of 1024 samples with a 256-sample 
overlap. This overlap is necessary due to the transient nature of the event. The data forms 
a two-dimensional grid which is normalised and then passed to the input layer of the neural 
net. The convolutional layers move through the data analysing each 2 x 2 window. These 
windows have filters applied to each value to attempt to recognise patterns in them. In this 
case, the size of the window and the nature of the data means that the first filter will be 
looking for patterns in a space of two Mel filters in two Mel spectrograms.  

In between the two convolutional layers a max-pooling function reduces the size of the data 
by moving through it in windows of 2 x 2 and reducing that window to one value equal to the 
maximum value in that window. The data is then flattened to a single dimension and passed 
through a sequence of Dense layers. Each of these layers contains a number of nodes which 
are connected to every other node of the previous and next layer. Each of these connections 
has a weight which determines how important the first node is to the value of the second 
node. Data moves through these layers being multiplied by the weights to create the value 
of the single node in the last layer of the network. It is this value that represents how 
confident the network is that an event occurred. Two of these layers are dropout layers that 
will randomly zero nodes. This is useful during training to prevent overfitting, but is not 
applied during the normal running of the network.  

With transient events, a second non-neural network detection approach can be applied in 
tandem to the neural net in the form of an onset detector. This can be used as a filter to limit 
the number of false positives produced by the network. This is useful in the case of real-time 
audio event detection since even with a low percentage of false positives, the network is 
being run so often (187 times a second at 48kHz with a 256-sample hop size) that many 
false positives can be produced in a short space of time. The onset filter is set up so that 
audio is only passed to the neural net if there was a significant transient detected.  This can 
be extended to a multi-microphone set up by using the onset filter and neural network in one 
microphone to attempt to detect an event. If this triggers that an event was detected the 
onset detectors of the other mics can be bypassed for a certain amount of time. It is likely 
that the microphone which first picked up the transient is the closest microphone to the event 
and thus by bypassing the onset detectors of the other mics we can still pick up the event in 
multiple microphones without being limited to just those which are close enough to detect a 
transient. 

The AI is written in C++ using TensorFlow so is cross-platform compatible but has been 
deployed in this case on the Linux edge compute server to make use of the GPU 
acceleration from the project’s server. This GPU acceleration is vital for the use cases stated 



        

above, since AI processing is computationally very expensive and needs to run on multiple 
audio channels simultaneously. GPU acceleration also allows for us to push our AI models 
further than would be possible with a CPU approach. Required computational power for the 
AI to perform increases with the amount of input data fed into it. Therefore, the GPU 
acceleration allows us to pass more 
audio signal representations to the AI 
to give it a better understanding of 
what is happening in the scene. 

From the content analysis and 
extraction, we create content flags that 
can be used to create mix decisions 
(within a traditional framework) or to 
trigger pre-recorded content to 
enhance broadcast audio. 
Additionally, these flags can be used 
to localise the sound sources as 
described below. The process flow is 
shown in Figure 8. The individual 
‘audio objects’ are packaged up with 
localisation and other metadata as a 
scene description which can be 
manipulated later in the production 
chain. 

Localising sound sources 

To be able to create audio objects for 
immersive contexts it is important that 
individual sources are accurately localised in the scene and corresponding metadata 
authored. This means that as the viewer navigates their visual perspective on the content, 
it is possible to correctly move sound sources around so that they match the location of the 
visual sources. 

To facilitate this, we have employed a triangulation routine. The triangulation methodology 
varies dependent upon the capture setup but typically is done using the time difference of 
arrival (TDOA) between signals of different microphone pairs picking up the same source. 
Knowing the location of these microphones allows the source to be positioned on a 
hyperbolic path between the two microphones. If the same source is picked up in additional 
microphones, there will be additional hyperbolae and the overlap between the resulting 
curves enables the accurate positioning/triangulation of the source. Determining the TDOAs 
can be a challenge using traditional algorithmic methods such as cross-correlation due to 
the high background noise of live events so we use our AI to extract the time stamp of source 
detection in each microphone to determine the TDOAs for a more robust approach. 

Determining the overlap of the resulting hyperbolic paths from the triangulation can also be 
cumbersome and computationally inefficient so for a real-time approach we have adopted a 
least squares search grid approach where we look for the most likely source position based 
on a set of microphone TDOAs. For each square in the search grid, the amount of time it 
would take for a sound originating in this square to reach each microphone is recorded. 
These are then adapted to be relative to the closest microphone to each square which gives 
the relative TDOAs for that square. When a set of microphones all detect the same audio 

 

Figure 8 – process flow for the audio 
extraction system 

 

 

 



        

event, the sample numbers at which each microphone detected the sound is recorded. 
These are then also adapted to be relative to the microphone which detected the event at 
the earliest point giving the relative TDOAs for this event. The relative TDOAs for this event 
can then be compared to the relative TDOAs for each square. The square in which there is 
the least difference between the two sets of values is the square in which the audio event 
occurred. The resolution of the search grid can be tailored to the context and available 
compute power. 

A practical constraint of performing the localisation in a live broadcasting environment is the 
requirement of the on-site broadcast team to measure the microphone locations. This can 
be problematic without specific equipment which limits the practical application of this 
methodology. Using the power of the cloud for processing however we are able to determine 
the location of not only the sound sources but also the position of the microphones as well, 
using an iterative optimisation routine which takes multiple source detections. 

Metadata 

With an object-based audio approach, the content composition can be altered at any point 
in the signal chain by additional processing stages and systems. For example, in the 5G 
Edge-XR project, the volumetric video processing from Condense Reality is able to provide 
additional positional data of the main sources or a region of interest in the space which is 
used to correlate with audio source positions of the various objects in the scene. The 
mechanism by which this happens is the S-ADM metadata stream which can be edited within 
the signal chain either on the server or at the end-user device for a personalised experience. 

AUDIO CONTENT RENDERING 

Automatic mixing 

When multiple, personalised mixes are required at the render end, it is imperative that there 
is an automated mixing stage within the system architecture. Automated mixing can take in 
the audio content, external location/tracking data and any individual viewing data to be able 
to compile an immersive and personalised mix. 

With the ability to add and remove the various objects/sources within the scene, the relative 
balance of the various components needs to be automatically managed and the output 
loudness monitored and scaled correctly. At the output stage of the signal chain, signal 
loudness is measured and manipulated in accordance with EBU R128 and ITU BS.1770-3. 
The parameters of this processing are editable so that different loudness standards for 
different platforms can be achieved. 

Rendering in a game engine for a personalised experience 

The audio content needs to be streamed in to the Unity gaming engine as a scene composed 
of various audio objects and ambisonic sound field descriptions in real-time so that the 
output content can be composed and rendered in real-time in conjunction with the Condense 
Reality volumetric video components. 

While Unity supports real-time audio input through its Microphone feature (typically used to 
allow users to input their voice into the game for voice commands and player to player 
communication), its capabilities are limited in two main aspects. Firstly, this feature only 
supports a single input audio channel and secondly this audio channel must come from a 
system audio input device leaving no way to stream audio from an external application or 
connection. These limitations are acceptable for player combination, however they become 



        

problematic when all audio in a scene needs to be streamed into Unity in a multichannel 
format as is the case for this project. Unity’s audio objects are usually connected to an 
abstract audio provider such as a microphone or an audio file. This makes implementing 
them fast and simple. The technique used to bypass these input limitations involves 
interfacing with Unity’s audio engine at the lowest level. One of Unity’s audio objects are 
created without a standard audio provider. Instead, a bespoke provider is implemented that 
receives audio data from an external stream and passes it to the audio object through a low-
level call-back function. This call-back is usually used for applying effects to or analysing the 
real time audio passing between the object and provider. Since this call-back allows for the 
raw audio data to be read and manipulated, we are able to use it to pass our data into the 
audio engine.  

Audio output options are also limited by Unity. Unity only supports up to 8 discrete output 
channels. Furthermore, channel positions in their configuration are not changeable. This 
means that if an 8-channel output format is used, the output mix is rendered based on the 
standard channel positions in a 7.1 audio format. This can be somewhat improved by using 
a third-party spatialisation plugin, however this makes only limited additions, the most useful 
of which for our purpose is a binaural output format. Ongoing work in this area is the creation 
of a bespoke audio rendering plugin for 5G Edge-XR. 

OUTLOOK 

The 5G Edge-XR project is an excellent test-bed for what is achievable using fast 5G 
networks that unlock the processing power GPUs in the cloud and opens the door for more 
applications of AI in the cloud. New, more advanced audio processing and mixing 
methodologies can be applied, facilitating not only future focussed immersive applications 
as described in this paper but also enhanced methods of producing higher quality content 
at a lower cost for current work-flows where there is a constant drive more content at lower 
budgets. 

CONCLUSIONS 

This paper has described work underway as part of the UK DCMS funded 5G Edge-XR 
project which aims to bring immersive XR experiences of live content to viewers on 
consumer devices by harnessing 5G networks and cloud/edge compute power. The paper 
has focussed on the audio engine, describing how an object-based audio system has been 
facilitated by employing real-time AI in the cloud for the real-time creation and rendering of 
audio objects. The object-based system allows for personalisation of the immersive content 
to match the visual rendering of the content performed in the cloud.  
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