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ABSTRACT 

In HTTP adaptive streaming, the client makes rate adaptation decisions based 
on the measured network bandwidth and buffer fullness. This simplifies the 
adaptation logic, however, it does often produce noticeable quality fluctuations 
during the streaming session. With content-aware encoding, one can improve 
the visual quality without increasing the total number of bits spent by carefully 
choosing where the bits are spent based on human perception. However, an 
adaptation logic that is unaware of the resulting variable-size segments may 
cause more stalls, which defeats the purpose of improving viewer experience 
through content-aware encoding. In this paper, we explain the design steps of 
a size-aware rate adaptation logic for one of the most popular DASH clients, 
namely dash.js, and show the improvements in rebuffering behavior and 
fetching top-resolution segments as a result of applying this logic. 

 

INTRODUCTION 

A common practice in adaptive streaming has been to run the transcoders in the constant 
bitrate (CBR) mode, resulting in more or less equal segment sizes for a given bitrate. That 
is, all the equal-duration segments produced out of each bandwidth-resolution pair in the 
encoding ladder (also called a representation in DASH terminology) would have a similar 
size in terms of bytes. This simplified the implementation of the rate adaptation for 
developers. However, natural content is not suitable for CBR encoding, since it exhibits a 
large variation in complexity in the temporal domain. Thus, during a playback session, even 
if the network conditions do not change and all the segments are requested from one 
particular representation, a naïve client that streams CBR-encoded segments inevitably 
experiences quality variation between the complex scenes or the ones involving more 
motion (e.g., an explosion) and the simple or static scenes (e.g., talking faces), unless the 
encoding bitrate is sufficiently high for even the complex scenes. 

There is a good amount of prior research on this topic. The first study [2] introduced the 
concept of consistent-quality streaming and solved this problem using an optimization 
framework. The proposed method allocated the bits among the segments such that it yielded 
the best overall quality based on a metric that captured the presentation quality of a group 
of segments. Later studies (e.g., [3, 4, 5, 13]) tackled the same problem by making certain 
assumptions and simplifications to come up with a practical solution. For example, the 
problem at hand gets simplified when one produces each representation in a (near) 
constant-quality fashion (using capped variable bitrate (VBR) encoding) and takes the 
resulting segment size information into account in rate adaptation in addition to the available 
bandwidth and the amount of media there is in the playback buffer.  



        

 

The available bandwidth varies over time and this is a significant constraint in any real-time 
streaming application, and since we can reliably predict the available bandwidth only for the 
next several seconds, not minutes, reliable rate adaptation decisions can only be made for 
a short horizon. In the case of live streaming, the output of the encoder is only known for a 
few segments and this limits the horizon further. For the segments that are yet to be 
encoded, actual sizes will be unknown. On the client side, we use the playback buffer as a 
breathing room for encoding bitrate variability. This buffer typically has a minimum and 
maximum size limit: if it is drained beyond the minimum threshold, the client should be 
conservative in rate adaptation as it may soon rebuffer and if more data arrives than the 
maximum size limit, the excess gets discarded. Normally, the goal is to keep a safe amount 
of data in the playback buffer between the minimum and maximum size limits. 

In this paper, our target application is video-on-demand (VoD) streaming where the source 
content is pre-encoded and packaged, and the size information for each segment of every 
representation is known a priori. For this case, we develop a solution, implement it for dash.js 
[1] and test it in a number of different scenarios. It is worth noting that this solution is a 
component inside the rate adaptation logic already built in at the client side and it is 
orthogonal to the specific video codec/encoder. That is, it works with any open-source or 
commercial encoder and any video codec such as AVC, HEVC, VVC or AV1. We will 
investigate size-aware rate adaptation for live streaming in the future and publish the results 
in a follow-up work. 

We believe in the reproducibility of the research. Therefore, our goal is to make the running 
code freely available [10]. We hope this code will eventually be merged into the main branch 
of dash.js and become a useful asset to developers and professionals.  

Why dash.js 

dash.js [1] is an initiative of the DASH Industry Forum to establish a production-quality 
framework for building media players that can play DASH content using client-side 
JavaScript libraries leveraging the Media Source Extensions API defined by the W3C. The 
dash.js code is covered by the BSD-3 license, thus, redistribution and use in source and 
binary forms, with or without modification is possible without cost or any license fees. 
Currently, it is one of the most popular open-source DASH client implementations with over 
a thousand forks and more than a hundred contributors. To date, several rate adaptation 
implementations have been developed for dash.js [12], which are referred to as adaptive 
bitrate (ABR) rules. 

THE SIZE-AWARE RATE ADAPTATION (SARA) LOGIC 

We propose SARA, a size-aware rate adaptation logic, aiming to improve the overall viewer 
experience and reduce the impact of content-aware encoding (CAE). SARA uses specific 
segment sizes, which are retrieved by the client ahead of time. These sizes are indicated in 
the Segment Index Box (`sidx`), defined in ISO/IEC 14496-12 and used in the DASH on-
demand profile as well as in CMAF. For simplification purposes, our implementation 
emulates the above using an auxiliary manifest file in addition to the primary manifest (MPD) 
file. As normally, the MPD contains the adaptation sets, representations, segments, 
segment durations and URLs, and codec/encryption details, etc., while the auxiliary manifest 
stores the size information for each segment in every representation. Before the streaming 
session starts, the client fetches both manifest files. 



        

 

We provide a detailed description of the SARA logic and its associated components. As 
depicted in Figure 1, the SARA logic is implemented as a new ABR rule in the dash.js client. 
First, in addition to the primary MPD, it also needs a segment-size list as the input. Second, 
SARA uses a slightly modified bandwidth measurement and smoothing process. Third, 
SARA uses the smoothed bandwidth values to predict the bandwidth for the next z (called 
horizon in this paper) download steps and makes the ABR decisions based on the predicted 
bandwidth. These new or modified components for SARA are indicated in gray color in 
Figure 1, where we also have a logger component to output diagnostics data from the client. 

 

Figure 1: The SARA solution within the dash.js reference client. SARA’s main components are 
highlighted in gray color. 

By default, dash.js measures the bandwidth from the last downloaded segment by dividing 
its size by its download time and this method is called segment-based last bandwidth 
(SLBW). For smoothing, dash.js computes the exponentially weighted moving average 
(EWMA) of the last four of these measured values. For making an ABR decision, dash.js 
directly uses the computed smoothed value. That is, it does not perform any further 
prediction. These steps are illustrated in Figure 2(a). 

SARA measures the bandwidth for the last downloaded segment in the same way (SLBW). 
However, for smoothing the measured values, SARA uses a method called segment-based 
sliding window moving average (SWMA), which simply computes the average of the last 
three segment downloads. The main difference is in the prediction stage, though. While 
dash.js has no built-in prediction component, we built two for SARA: Recursive Least 
Squares (RLS) [7] and Model Predictive Control (MPC) [8]. The steps for SARA are 
illustrated in Figure 2(b). 

Bandwidth Measurement and Smoothing 

For any rate adaptation logic, accurate bandwidth measurement and smoothing is essential. 
As explained above, after each downloaded segment, the bandwidth is computed by dividing 
the segment size by the delta between the times the download was completed and the 
request was sent. Due to many reasons such as the transient traffic in the network or the 
load on the server, measured bandwidth values may show a large variation. Thus, it is often 
a good idea to smooth out the measured values. For this purpose, the EWMA or SWMA 
method can be used. If desired, a safety factor of 90% can be used for the measured values 
as suggested in the default dash.js implementation. 



        

 

 

Figure 2: The steps involved in the default dash.js (a) and SARA (b). 

Bandwidth Prediction 

To perform a multi-step bandwidth prediction (for z steps), we developed two robust 
approaches: RLS and MPC, as shown in Figure 3. In a given streaming session, one of 
these approaches is picked by SARA and it uses the last M smoothed bandwidth values for 
making a prediction for the next z steps. 

 

Figure 3: Bandwidth prediction approaches: RLS (a) and MPC (b). 

Recursive Least Squares (RLS) Approach  
RLS [7] is an online linear adaptive filter that recursively finds the filter coefficients that 
minimize a cost function relating to the input signals for accurate prediction. The RLS-based 
bandwidth prediction works in two phases at every segment download step i: 

• Phase 1 (Filter Taps): It takes as an input a vector of the last M (M = 4 in this paper) 
smoothed bandwidth measurement values (denoted by Ci in Figure 3) given by the 
bandwidth measurement/smoothing component, and then recursively calculates the 
gain vector, inverse correlation matrix of the smoothed bandwidth measurement 
values and the estimated error (denoted by ϵi in Figure 3). 

• Phase 2 (Update): These are used to update the filter taps vector (denoted by Wi in 
Figure 3) of length M, and finally return the bandwidth prediction for the next z steps.  

RLS has three important benefits. First, it does not require extensive computational 
capabilities, allowing its deployment over practical real-time systems with commodity mobile 
devices. Second, it exhibits extremely fast convergence and does not need a prediction 
model. Third, it is robust against time-varying network conditions through its forgetting factor. 



        

 

Model Predictive Control (MPC) Approach  
MPC [8] is a widely deployed approach in the industry and has been proven to have a good 
forecasting and prediction performance. It falls into the model-based control category, which 
is known to be simple and practical, and it works in various environments. The MPC 
approach essentially selects the future bandwidth prediction by looking z steps ahead, 
considering the last M (M = 4 in this paper) smoothed bandwidth measurement values. At 
each segment download step i, the MPC approach works in two phases: 

• Phase 1 (Process):  It takes as an input a vector of the M most recent smoothed 
bandwidth values given by the bandwidth measurement/smoothing component. 

• Phase 2 (Optimizer and Model): This represents the core of the MPC approach where 
given Ci and z, it predicts the future bandwidth using off-the-shelf MPC optimizer 
function fmpc(.) with a good accuracy (more than 90% in our case). Here, the objective 
function is to find the bandwidth prediction that minimizes the prediction error.   

SARA ABR Rule 

SARA selects the most suitable representation for the next segment to be downloaded from 
the list of available representations considering how much media is available in the playback 
buffer, minimum and maximum playback buffer sizes, predicted bandwidth and sizes of the 
candidate segments from the available representations. 

Every downloaded segment is placed in the playback buffer, which cannot take more media 
than Bmax (specified in terms of seconds). If the buffer level drops lower than a minimum size 
of Bmin (also specified in terms of seconds), the client needs to be careful due to increased 
risk for a rebuffering. At step i, the SARA ABR rule computes the permutation table by 
looping through all the available representations and works as follows: 

1. Compute the next download time (denoted by NDTi+1) for each candidate segment 
from the available representations by dividing its size (denoted by NSSi+1, which is 
available from the segment-size list) by the predicted bandwidth. 

2. Compute the next buffer level (denoted by Bi+1) for each candidate segment from the 
available representations by adding the segment duration (denoted by 𝜏) to the 

current buffer level (denoted by Bi) and subtracting the next download time (NDTi+1). 

SARA picks the segment from the representation with the highest encoding bitrate that 
ensures the next buffer level (Bi+1) ≥ Bmin. If no candidate segment ensures this condition, 
the representation with the lowest encoding bitrate is selected. The overall flowchart of the 
SARA ABR rule is given in Figure 4, which is invoked after downloading each segment to 
determine the representation for the next segment. In the flowchart, the solid boxes handle 
the size-aware rate adaptation logic and the dashed boxes control the upshifting 
aggressiveness through the upshiftThreshold parameter, which is set to five in this paper. 

There is an optional improvement for the SARA ABR rule to improve the likelihood of fetching 
higher-quality segments at the expense of a slightly increased risk of rebuffering, which is 
omitted from Figure 4 to simplify the flowchart. When the current buffer level (Bi) ≥ Bmin and 
the actual encoding bitrate (denoted by Ei+1 and computed by dividing the size of the 
candidate segment (NSSi+1) by the segment duration (𝜏)) is equal to or higher than the 

predicted bandwidth, SARA may ignore checking the next buffer level (Bi+1) and pick the 
segment whose actual encoding bitrate (Ei+1) is the lowest among the ones that are higher 
than or equal to the predicted bandwidth.  

 



        

 

 

Figure 4: Flowchart of the SARA ABR rule. 

SARA Working Example 

Consider a hypothetical example with two-second segments and four representations 
advertised at 300, 500, 1000 and 2500 Kbps. The client predicts the next bandwidth to be 
500 Kbps and is supposed to pick one of the candidate segments, whose actual sizes are 
of 200, 250, 500 and 1250 Kbits, respectively. Assume Bmin is set to two seconds. 

We demonstrate two cases. When the current buffer level is one second, SARA computes 
the next buffer levels as given in Table 1. Following the logic given in Figure 4, SARA picks 
the segment from the 1000 Kbps representation, whereas the rate-based logic would have 
picked the segment from the 500 Kbps representation. 

Advertised 
Encoding 

Bitrate (Kbps) 

Advertised 
Segment 

Size (Kbits) 

Next 
Segment 

Size (Kbits) 

Predicted 
Bandwidth 

(Kbps) 

Current 
Buffer 

Level (s) 

Next 
Download 
Time (s) 

Next 

Buffer 
Level (s) 

300 600 200 500 1.0 0.4 2.6 

500 1000 250 500 1.0 0.5 2.5 

1000 2000 500 500 1.0 1.0 2.0 

2500 5000 1250 500 1.0 2.5 0.5 

Table 1: SARA’s computations when the current buffer level is one second. 

Following the same logic, when the current buffer level is 10 seconds, SARA computes the 
next buffer levels as given in Table 2 and picks the segment from the 2500 Kbps-
representation, whereas the rate-based logic would have again picked the segment from the 
500 Kbps-representation. 

Advertised 
Encoding 

Bitrate (Kbps) 

Advertised 
Segment 

Size (Kbits) 

Next 
Segment 

Size (Kbits) 

Predicted 
Bandwidth 

(Kbps) 

Current 
Buffer 

Level (s) 

Next 
Download 
Time (s) 

Next 

Buffer 
Level (s) 

300 600 200 500 10.0 0.4 11.6 

500 1000 250 500 10.0 0.5 11.5 

1000 2000 500 500 10.0 1.0 11.0 

2500 5000 1250 500 10.0 2.5 9.5 

Table 2: SARA’s computations when the current buffer level is 10 seconds. 

 



        

 

RESULTS 

For the testing, we used a virtualized DASH streaming setup, which can be obtained from 
[6]. In this setup, we created three different nodes for the server to serve the DASH content, 
client to run different ABR rules and network emulator to throttle the bandwidth according to 
a bandwidth profile. For the bandwidth profiles, we used three of them: Cascade, Twitch and 
LTE, which are plotted for a duration of 10 minutes in Figure 5. These bandwidth profiles 
are repurposed for this work from [11]. 

 

Figure 5: Bandwidth profiles used in the testing. 

For the test content, we created a 10-minute video mixed from a variety of videos that 
exhibited different scene complexities. The mixed video was encoded by a professional 
encoder with the CAE mode enabled. The choice of codec was AVC, and the frame rate 
and segment duration were set to 25 fps and two seconds, respectively. We generated four 
representations at 360p at 850 Kbps, 540p at 1690 Kbps, 720p at 2720 Kbps and 1080p at 
5540 Kbps, where the bitrates indicate the average bitrate at that resolution, although the 
segment encoding bitrates varied significantly due to CAE as shown in Figure 6. 

 

Figure 6: Segment encoding bitrates for the test content. 



        

 

To compare different ABR rules, we recorded the total downloaded (TD) video size (in 
megabytes), total rebuffering duration (TRD, in seconds), long-rebuffering count (LRC), 
short-rebuffering count (SRC) and percentage of segments rendered at 720p or higher (HD). 
Here, a short rebuffering refers to a rebuffering that lasts less than a single frame duration 
(40 milliseconds at 25 fps) and all other rebufferings are considered a long rebuffering. We 
compare two built-in rate ABR rules (namely, rate-based and dynamic) with three flavors of 
the SARA ABR rule (namely, SARA-Basic, SARA-RLS and SARA-MPC). Here, SARA-Basic 
considers segment sizes in rate adaptation but does not use the RLS or MPC bandwidth 
prediction, it rather simply uses the smoothed bandwidth value from Figure 2(b).  

In the client, we used (Bmin, Bmax) = (6, 30) in seconds. The playback started after the duration 
of the media in the playback buffer exceeded Bmin. 

Comparisons 

Table 3 and Figure 7 present the results for five ABR rules for three bandwidth profiles for 
the 10-minute test content. In these runs, SARA-RLS and SARA-MPC performed a two-step 
bandwidth prediction. Further, SARA-RLS used the following parameters: initial input 
variance estimate parameter for the inverse correlation matrix of size M x M (σ) = 0.001 and 
forgetting factor (λ) = 0.999. These parameters are further discussed later in this section.  

There are a number of important observations from these results:  

• All three SARA ABR rules experience not only a smaller total number of rebufferings 
but also a shorter total duration of rebufferings. This vastly improves the viewer 
experience. This is largely due to the fact that SARA takes segment sizes into account 
in its decisions such that it can refrain from fetching larger-than-expected segments 
if there is a risk of rebuffering and it can carry on fetching smaller-than-expected 
segments if there is no risk of rebuffering.  

• The rate-based and dynamic ABR rules have the best HD performance for the 
Cascade profile (i.e., when the network is more stable) but are never able to reach 
1080p quality, while SARA-Basic, SARA-RLS and SARA-MPC fetch 87, 115 and 120 
segments, respectively, at 1080p.  

• For the Twitch profile, the rate-based and dynamic ABR rules can fetch few 1080p 
segments and the SARA flavors fetch about half of the segments at 1080p.  

• For the LTE profile, the rate-based and dynamic ABR rules fetch very few 1080p 
segments whereas the SARA flavors fetch about one third of the segments at 1080p. 

If we check the logs for the segments between #100 and #200 (where the test content shows 
the largest encoding bitrate variation as shown in Figure 6), we observe that most 
rebufferings happen between segments #100 and #200 for the rate-based and dynamic ABR 
rules. The HD performance for the rate-based and dynamic ABR rules also drops during this 
period meaning that the share of the 720p and 1080p segments fetched decreases. At the 
same time, all three SARA flavors increase the share of the HD segments proving that SARA 
can easily deal with segments encoded with CAE. 

 

 

 

 

 



        

 

Bandwidth Profile ABR Rule TD (MB) TRD (s) LRC SRC HD (%) 

Cascade 

Rate-based 184.00 4.92 6 11 88.33 

Dynamic 165.88 3.17 10 8 80.67 

SARA-Basic 178.56 1.26 3 5 65.33 

SARA-RLS 196.10 0.40 1 1 65.00 

SARA-MPC 198.06 0.80 2 1 66.67 

Twitch 

Rate-based 180.88 2.69 6 8 61.67 

Dynamic 186.57 2.54 10 6 68.00 

SARA-Basic 231.48 1.40 3 7 74.00 

SARA-RLS 199.01 1.00 3 4 55.00 

SARA-MPC 203.62 1.02 4 5 51.33 

LTE 

Rate-based 188.78 1.90 5 12 87.00 

Dynamic 130.19 1.30 6 7 53.00 

SARA-Basic 140.38 1.27 5 6 40.67 

SARA-RLS 146.10 1.00 3 7 43.67 

SARA-MPC 161.47 0.95 4 5 62.33 

Table 3: Comparison of the five ABR rules for the three bandwidth profiles. 

 

Figure 7: Distribution of the segment resolutions for the five ABR rules. 

Single vs. Multi-Step Bandwidth Prediction 

As it can be seen in Table 4, having a two-step (as opposed to a single-step) prediction 
improves the streaming performance for both SARA-RLS and SARA-MPC. The bandwidth 
prediction accuracy has a direct effect on rebuffering duration and HD performance. The 
results also show that SARA-MPC produces better HD performance results than SARA-RLS 
when the network conditions become more dynamic (e.g., the LTE profile compared to the 
Cascade profile), since in this case the RLS approach makes more conservative predictions 
and underperforms in upshifting. 



        

 

Bandwidth Profile ABR Rule TD (MB) TRD (s) LRC SRC HD (%) 

Cascade 

SARA-RLS-1 192.23 0.73 2 1 63.66 

SARA-RLS-2 196.10 0.40 1 1 65.00 

SARA-MPC-1 198.25 0.91 3 1 65.00 

SARA-MPC-2 198.06 0.80 2 1 66.67 

Twitch 

SARA-RLS-1 203.55 1.25 4 4 54.00 

SARA-RLS-2 199.01 1.00 3 4 55.00 

SARA-MPC-1 199.86 1.15 4 6 50.00 

SARA-MPC-2 203.62 1.02 4 5 51.33 

LTE 

SARA-RLS-1 139.86 1.25 4 7 38.00 

SARA-RLS-2 146.10 1.00 3 7 43.67 

SARA-MPC-1 149.89 1.33 5 6 48.66 

SARA-MPC-2 161.47 0.95 4 5 62.33 

Table 4: Single vs. multi-step bandwidth prediction (SARA-RLS: σ = 0.001, λ = 0.999). 

Parameter Tuning for SARA-RLS 

In the RLS approach, an important parameter is the forgetting factor (λ), which is defined as 
at what weight(s) previous smoothed values contribute to the result [7]. A lower forgetting 
value means the earlier samples are forgotten faster, which is a more appropriate behavior 
for more dynamic samples. This is confirmed by checking the results for the Twitch and LTE 
profiles in Table 5, as the results with the (σ2, λ2) pair are better considering the percentage 
of the HD segments and total rebuffering duration, whereas for the Cascade profile, the 
results with the (σ1, λ1) pair are better.  

Bandwidth Profile ABR Rule TD (MB) TRD (s) LRC SRC HD (%) 

Cascade 
RLS-2 (σ1,λ1) 196.10 0.40 1 1 65.00 

RLS-2 (σ2,λ2) 191.87 0.75 3 3 63.66 

Twitch 
RLS-2 (σ1,λ1) 199.01 1.00 3 4 55.00 

RLS-2 (σ2,λ2) 199.57 0.75 3 3 58.00 

LTE 
RLS-2 (σ1,λ1) 146.10 1.00 3 7 43.67 

RLS-2 (σ2,λ2) 144.30 0.67 3 5 50.00 

Table 5: SARA-RLS two-step prediction with σ1 = 0.001, λ1 = 0.999, σ2 = 0.01, λ2 = 0.99. 

SOURCE CODE and DEMO 

As mentioned in the introduction, we are pleased to offer the source code and an offline 
demo for SARA at [10]. Future improvements including any bug fixes will also be 
documented at the same link. We hope the SARA ABR rule will eventually be integrated to 
the official dash.js repo and used by developers as the share of content-aware-encoded 
videos increases. The offline demo can be used to play the output videos resulting from 
different ABR rules for different bandwidth profiles. On the demo page, several viewer 
experience metrics are reported and the bitrate is plotted in a real-time graph.  

 

 



        

 

CONCLUDING REMARKS 

With content-aware encoding, it is possible to use the bits in a smarter way to improve the 
visual quality of the video content. However, this creates a problem during streaming, most 
of the time ending with more rebufferings and lower-quality segment downloads. To address 
these problems, we developed a size-aware rate adaptation (called SARA) logic that uses 
the segment size information and two different multi-step bandwidth prediction approaches. 
Our results show major improvements in rebuffering behavior as well as in the percentage 
of the playback time spent at the top resolution. The results are promising, and we plan on 
implementing SARA for the RDK’s AAMP player as it is another widely used open-source 
player [9].  
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