

REAL-TIME 3D RECONSTRUCTION OF DYNAMIC SCENES
WITH MULTIPLE KINECT V2 SENSORS

Kai Zhou1, Li Song1, Jingchuan Hu1, Shuai Guo1, Yu Dong1

 2 Yanying Sun, Yesheng Xu

1 Institute of Image Communication and Network Engineering, Shanghai
Jiao Tong University, China

2 Intel Corporation, China

ABSTRACT

3D reconstruction of dynamic scenes is an important task in the field of
multimedia which arouses widespread interest in recent years. Although
several novel 3D applications have been unlocked with the increasing
popularity of commercial RGB-D cameras like Microsoft Kinect, Azure, and
Intel RealSense, real-time performance is still a big problem. In this paper,
an open-solution, low-latency, real-time 3D reconstruction system is
presented. The proposed system runs in a simple architecture where
multiple Kinect v2 sensors are connected to a single computer. It consists
of a series of modules including capture, alignment, and post-processing.
The data stream of all sensors will pass through these modules in turn,
generate point clouds, and finally fusion to a single 3D model. To improve
the real-time performance, this system adopts a pipeline design that uses
multiple threads to execute all modules concurrently. Besides, the first-in-
first-out feature of the queue is utilized for data transmission and thread
separation. At last, experimental results are presented to verify the
system's effectiveness concerning the 3D reconstruction visual quality and
real-time performance.

INTRODUCTION

Real-time 3D reconstruction has emerged as one of the active research topics in the field
of multimedia and computer graphics. It can be applied to many novel applications such as
free view video[1], human motion recognition, 3D game interaction, and augmented or
immersive reality. Most of these applications have high requirements for real-time
performance. However, although real-time reconstruction techniques are mature in the
field of static object reconstruction, it is still a big challenge to reconstruct dynamic scenes
limited by huge amounts of data and the complexity of algorithms. Obtaining the depth
information of the target scene is the essential for dynamic scene reconstruction, which
has made it widely studied in recent years.

According to the way of depth information acquisition, previous researches can be
classified into two categories, active methods and passive methods. Passive methods
generally use disparity information[2] and surrounding environment[3] to calculate depth
map by stereo-matching algorithms. Passive methods do not interact with the
reconstructed object in the reconstruction process so there is no interference between
multiple sensors. In contrast, active methods acquire a depth map by emitting lasers or

infrared light to the target object. However, considering that the accuracy and performance
of the depth estimation algorithm in passive methods cannot meet the requirement of real-
time systems, most researchers turn to active depth sensors such as Time-of-flight(TOF)
sensors[4,5,6].

The existing 3D reconstruction systems based on active depth cameras have many
drawbacks. First, a multi-sensor system is cumbersome to build due to numerous devices
and complex system architecture. Next, as for real-time performance, the frame rate of the
system decreases when the number of sensors increases and the scene becomes larger.
In terms of practicality, most real-time reconstruction systems are not open-solution. These
problems are satisfactorily addressed in this paper.

In this paper, we present an open-solution system based on multiple Kinect v2 sensors.
The proposed system targets real-time reconstruction of dynamic scenes with the ability to
acquire full 3D models of moving objects and generate realistic 3D models of dynamic
scenes through pipelining multiple modules. With the integration of many optimizations
such as multi-threading and GPU acceleration, each module achieves a balance between
complexity and quality, making it realistic to reconstruct moving objects.

The main contributions of our work are as follows:

⚫ A simple 3D reconstruction system with multiple Kinect v2 sensors that only uses one
single convenient computer, which can reconstruct dynamic scenes in real-time.

⚫ Combines multiple optimization methods including multi-threading and GPU
parallelism thus achieves the sensors' inherent frame rate.

⚫ The overall system solution will be released and kept updated on
https://github.com/sjtu-medialab/Kinect3D

The remaining parts of the paper are organized as follows. First, the existing related works
are discussed. Next, we describe the hardware architecture of the system. Then the
pipeline of the system and the corresponding algorithms are described. Finally, the quality
and real-time performance of the system are presented.

RELATED WORK

3D reconstruction has attracted a lot of attention in recent years. Due to the high
complexity of stereo matching algorithms used for depth estimation and the rapid
emergence of low-cost RGB-D cameras in recent years, RGB-D sensors are commonly
used as data acquisition devices in real-time systems. Many of the relevant real-time
reconstruction systems such as [4,5,6,7,8,9,10] refer to Microsoft Kinect sensors as data
acquisition devices, since it provides acceptable resolution with affordable cost.

Microsoft has released three types of depth sensors: Kinect v1, Kinect v2, and azure
Kinect. Their parameters are examined in [11]. Although the azure Kinect is the successor
of the previous two generations of sensors, Kinect v2 sensor is still the most widely used
sensor in research since the Azure Kinect was just released in March 2020. Based on
Kinect sensors, many real-time systems are proposed.

LiveScan3D[5] presents an open-source 3D reconstruction system using multiple Kinect
v2 sensors which can generate high-quality point clouds of target scenes with real-time
performance. It adopts a server-client distributed system where the clients capture raw 3D
point clouds and transmit them to the server. As a result, the frame rate gradually

https://github.com/sjtu-medialab/Kinect3D

decreases when the size of point cloud data increases. The experimental results show that
when the scene size is 2m*2m*2m, the frame rate will be reduced to below 10 fps.

In [4], a similar multiple depth stream-
based system is proposed with a better
real-time performance by employing an
intra-frame compression
scheme(JPEG for the RGB and LZ4
entropy compression for the depth
maps). It also introduces a novel
framework to evaluate the quality of
real-time 3D reconstruction systems in
the absence of ground truth. However,
both [4] and [5] use a slave-master
architecture which uses multiple
computers to distribute the
computational load. This makes
system deployment more complicated
and cumbersome.

Andrej[6,9] proposes a much simpler
system in which several Kinect v2
cameras are connected to a single
computer. This system achieves improved performance by integrating GPU parallel
computing. Experiment results show that it processes each camera in an average of
14.18ms. The disadvantage of such a system is obvious, when the number of sensors is
more than two, the frame rate cannot meet the real-time requirement.

The system proposed by this paper is designed concerning previous works, integrating the
advantages of each system, adopting the simplest system architecture, and conducting a
lot of optimizations for real-time performance. As a result, achieving the best performance
at acceptable quality.

OVERVIEW OF THE SYSTEM

As demonstrated in Fig.1, the capturing system is composed of multiple Kinect v2 sensors.
The Kinect v2 sensors are positioned on a circle of radius 𝑟 ∈ [0.5𝑚, 4𝑚] and oriented
toward the center. Each sensor consists of a regular RGB camera and a depth scanner,
which can generate color and depth maps simultaneously. The RGB camera is used for
the acquisition of color maps with a 1920x1080 pixels resolution and the depth scanner
captures depth maps with a resolution of 512x424[12].

In terms of the software development kit(SDK), the official SDK provided by Microsoft
limits its usage to one sensor per computer, which inevitably leads to a complex structure
of multi-sensor systems. To simplify the system, the system uses an open-source third-
party driver libfreenect2[13], which has been reported to support up to 5 devices through
USB3.0.

To capture the RGB-D stream simultaneously, we allocate a separate thread for each
sensor. Since multiple infrared projectors work simultaneously, the infrared rays emitted by
different sensors may interfere. However, as confirmed by [14], it has been proved that
interference is not as strong as expected. Moreover, according to the experimental results
of [15], interference is mainly manifested in the absence of a few depth pixels at object

Figure 1 – System hardware architecture

boundaries. This has little impact on the system because the overlap areas between
adjacent sensors can compensate for missing values.

Fig.2 presents the whole pipeline of the system, which consists of multiple stages that start
with capturing RGB-D streams and end with an interactive 3D rendering window created
by OpenGL.

THE REAL-TIME 3D RECONSTRUCTION ALGORITHM

In this section, we describe the pipeline and implementation details of the proposed
system. According to the direction of data flow transmission and processing, this section
mainly describes four modules of the system in order, which are synchronization, extrinsic
calibration, removal of overlap regions, and post-processing.

Synchronization

Although the official document gives a frame rate of 30 fps, it is observed that the frame
rate can fluctuate in practice. Therefore, the system allocates a thread dedicated to
synchronizing all sensors. To synchronize the frames captured by different sensors, we
employed a post-synchronize procedure which can keep the frame interval within 16 ms
and the procedure is as follows.

Considering the depth and color pairs are generated with timestamps, we denote the

timestamps of RGB-D frames as 𝑡𝑖 , 𝑖 = 1, . . . , 𝑁, where 𝑁 is the total number of sensors.
When all cameras are started, records the current timestamp as 𝑡0. Then calculate
timestamp interval for each sensor:

𝑡𝑖𝑛𝑡
𝑖 = 𝑡𝑖 − 𝑡0, 𝑖 = 1, . . . , 𝑁

For all timestamp intervals, if exist two sensors 𝑖 and 𝑗 satisfy:

 𝑡𝑖𝑛𝑡
𝑖 − 𝑡𝑖𝑛𝑡

𝑗
< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

then drop the corresponding overrunning frame. Here the value of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set to 16
ms, which is half a frame interval.

Figure 2 – Pipeline design of the system

Extrinsic Calibration

Calibration refers to the process of registering point cloud data from the camera coordinate
system to the world coordinate system. The transformation relationship can be described
by a rotation matrix 𝑅3𝑥3 and a translation vector 𝑡3𝑥1, called extrinsic matrix. For each
sensor, an extrinsic matrix [R t] has to be calculated.

During the calibration stage, we use a 2D visual marker system proposed in [16] which is
also used in [5]. When all sensors are oriented to the same center, which is assumed in
this system, only one marker is needed. And for convenience, this system establishes the
origin of the world coordinate system at the center of the marker. The marker is required to
appear in all of the sensors. Each sensor will detect five corner points in the field of view
as feature points, once the 3D location of the marker is known, the transform matrix that
transforms any point 𝑥𝑠 from the sensor's coordinate system to a point 𝑥𝑚 in the world
coordinate system can be calculated:

 𝑥𝑤 = 𝑅𝑠(𝑥𝑠 − 𝑡𝑠)

where 𝑡𝑠 is the translation matrix and 𝑅𝑠 is the rotation matrix.

The disadvantage of marker calibration is that it will be affected by the detection accuracy
of key points on the plane. In order to reduce the matching error, this system use iterative
closest points(ICP)[17] to refine the initial estimate. Let 𝑅𝑟 be the rotation matrix and 𝑡𝑟
the translation matrix, the two steps transform relationship can be combined into:

𝑥𝑤 = 𝑅𝑟(𝑅𝑠(𝑥𝑠 − 𝑡𝑠) + 𝑡𝑟)

In the refining stage, an offline thread is deployed due to the high complexity of the ICP
algorithm. As long as the refine button is pressed, the pipeline outputs a synchronous
frameset for ICP. After the refining stage is finished, the current frame will be discarded
and the extrinsic parameters will be updated. The offline mode ensures that the frame rate
of the system is not affected during the refining process.

Removal of Overlapping Regions

The point clouds
generated from
different sensors
inevitably have a large
portion of overlap
regions, especially
between two adjacent
cameras, resulting in
many redundant and
mismatched data in
overlapping areas. In
this system, the
removal of overlap
regions is performed between every two adjacent sensors. The methodology applied in
this system is similar to [15,18], which maps the points of one sensor to another through
the external parameter matrix. In [15], removal of overlap regions is the bottle-neck part
due to its iterative strategy, normally takes up to several hundreds of milliseconds, which
forces them to adopt a coarse to fine strategy. This system abandons the iterative features

Figure 3 – Removal of Overlap Point cloud Regions

and implements the algorithm in GPU considering that the mapping of each pixel is
independent, thus reduces execution time dramatically, just taking a few milliseconds.

Let A and B be two adjacent sensors, the algorithm implemented in this system is
illustrated as Fig.3, which will remove the area that overlaps with B in A. This algorithm
can be summarized as follows:

1) Forward mapping: For each pixel 𝑝𝐴(𝑥, 𝑦) in A's depth map, there is a corresponding

3D point 𝑋𝑐
𝐴(𝑥, 𝑦, 𝑧) in the camera coordinate system. To establish mapping

relationship with camera B, 𝑋𝑐
𝐴(𝑥, 𝑦, 𝑧) must first be forward mapped to the world

coordinate system:

 𝑋𝑤
𝐴(𝑥, 𝑦, 𝑧) = 𝑅𝐴(𝑋𝑐

𝐴(𝑥, 𝑦, 𝑧) + 𝑡𝐴)

where 𝑅𝐴 and 𝑡𝐴 are sensor A's external matrix.

2) Backward mapping: Backward mapping has two steps, the first step is to project

𝑋𝑤
𝐴(𝑥, 𝑦) to camera coordinate system of B, the projected points from A to B are

𝑋𝑐
𝐴𝐵(𝑥, 𝑦, 𝑧) = 𝑅𝐵

−1𝑋𝑤
𝐴(𝑥, 𝑦, 𝑧) − 𝑡𝐵

The second step is to project 𝑋𝑐
𝐴𝐵(𝑥, 𝑦, 𝑧) to the 2D depth image. The 2D projection

points are:

𝑝𝐴𝐵(𝑥, 𝑦) = 𝛱{𝐾𝐵, 𝑋𝑐
𝐴𝐵(𝑥, 𝑦, 𝑧)}

where 𝛱 represents the 3d to 2D projection and 𝐾𝐵 is the internal parameters of
camera B.

3) Overlap determination: Considering a patch centered on 𝑝𝐴𝐵(𝑥, 𝑦), when the depth of

the points in the patch and 𝑝𝐴𝐵(𝑥, 𝑦) is less than a threshold 𝑇𝑟, it means that the

current point overlaps with B, then remove 𝑝𝐴(𝑥, 𝑦) from A. The threshold 𝑇𝑟 used in
this system is 30mm.

Post processing

Due to the limitations of the TOF camera, there are many missing and unstable pixels in
the Kinect v2 depth map, so the reconstructed model contains a lot of noise. Considering
the high complexity of the filtering algorithm for point clouds, it is one of the major
difficulties in achieving real-time frame rates.

Inspired by the reconstruction algorithm "Step Discontinuity Constrained (SDC)
triangulation" proposed in [19], this system applies the step discontinuity constrain in filter
and implements an algorithm named “SDC filter”. Considering the pixels of the depth map
and the 3D points are in a one-to-one correspondence, and the neighborhood relationship
between depth pixels represents the topology of the 3D space points. The algorithm can
be described as follows:

For each pixel 𝑝 = 𝐼𝑧(𝑥, 𝑦), considering its adjacent pixels at the top, down, left and right,

𝑝𝑡 = 𝐼𝑧(𝑥, 𝑦 − 1), 𝑝𝑑 = 𝐼𝑧(𝑥, 𝑦 + 1), 𝑝𝑙 = 𝐼𝑧(𝑥 − 1, 𝑦) and 𝑝𝑟 = 𝐼𝑧(𝑥 + 1, 𝑦). These five points
can generate four potential triangles. Take 𝑆1 = {𝑝, 𝑝𝑡, 𝑝𝑙} as an example, it will be
generated if it satisfies |𝑝 − 𝑝𝑡| < 𝑡 and |𝑝 − 𝑝𝑙| < 𝑡 and|𝑝𝑙 − 𝑝𝑡| < 𝑡, where 𝑡 is a threshold,
and the value of 𝑡 is 0.015m in this paper. If none of these four potential triangles are

generated, then the depth pixel 𝑝 = 𝐼𝑧(𝑥, 𝑦) will be removed and so is the corresponding
3D point.

EXPERIMENT

In this section, we present the experimental results of the proposed system. The system is
written in C++ and CUDA C with the operating system Linux Manjaro 64bit. The whole
system runs in a single computer with an i9-10900K processor, 32-GB RAM, and a CUDA-
enabled NVIDIA RTX 2080Ti GPU.

Real-time Performance

The real-time performance of the proposed system is tested by measuring the processing
time of each module in the system. The experimental condition is 3 sensors and the scene
size is set to 1.5m*1.5m*1.5m. To make the results more reliable, we capture 1000
consecutive frames and track the latency of each frame. The result is demonstrated in
Fig.4. Then we calculate the average latency of each module in Tab.1. Due to the pipeline
design pattern, all the modules in this system are highly parallel, so the frame rate is
limited only by the most time-consuming module. As shown in Tab.1, the camera
acquisition module takes the longest time which is slightly over 33ms and the final average
frame rate is calculated to be 25-27 fps. However, in most cases, the system works at 30
fps. The lower average frame rate is the result of frame loss by some unknown agnostic
problem, which can be seen in Fig.4(a). Under normal circumstances, the interval between
two frames captured by the sensor is 33ms, but in some occasional cases, the interval
between two frames is 66ms or even 99ms. This is a problem caused by the hardware, so
we can still state that this system achieves the inherent sensor frame rate of 30 fps in
terms of real-time performance.

(a) (b)

Figure 4 – Performance test of each module. (a) Acquisition RGB-D from sensors. (b)
Alignment, overlap removal and filter modules

Table 1. Performance results of the system pipeline

Sensors
Scene

size(𝑚3)

Execution time(ms)
Frame

rate capture synchronize alignment
overlap
removal

filter render

1

1.0*1.0*1.0 37.447 — 4.350 — 1.995 17.381 26.674

1.5*1.5*1.5 37.748 — 4.286 — 1.905 17.691 26.460

2.0*2.0*2.0 37.748 — 4.283 — 1.862 17.613 26.505

2

1.0*1.0*1.0 37.951 0.068 7.360 5.826 5.258 18.518 25.897

1.5*1.5*1.5 37.083 0.099 7.158 5.496 5.872 17.308 25.897

2.0*2.0*2.0 38.449 0.001 7.699 5.418 5.507 18.893 25.637

3

1.0*1.0*1.0 36.582 0.030 14.495 9.724 8.510 17.006 26.935

1.5*1.5*1.5 36.182 0.105 15.471 9.911 8.510 16.876 27.002

2.0*2.0*2.0 37.216 0.999 13.828 9.911 9.756 17.401 26.645

Reconstruction Quality

The proposed system is a combination of multiple techniques. Fig.5 shows how each
technique improves the reconstruction quality. As Fig.5(a) shows, where we simply acquire
RGB-D streams from each sensor and register to world coordinate. The reconstructed
model obtained has a lot of discrete noisy points, especially at the edges of the object and

(a) (b) (c) (d)

Figure 5 – Reconstruction quality. (a) Initial point cloud captured from kinect v2 sensors.
(b) Result after overlapping regions removal. (c) Result after post-processing. (d) Final

result combining both overlapping regions removal and post-processing.

in the regions where the depth distance is far resulting in missing depth pixels. Fig.5(b)
shows the result of removing the redundant data in the overlap area of the sensor. Next in
Fig.5(c), the quality can be greatly improved by using the SDC filter algorithm. Fig.5(d) is
the final result combining all methods and achieves the best visual quality.

Besides, to make the results in this paper comparable, we build almost the same scene as
in LiveScan3D[5] and give the reconstructed results in Figure 6. As can be seen, the
reconstruction results in this paper have less noise and smoother surfaces, mainly
benefited from the removal of overlap regions and the step discontinuity constrained
filtering algorithm. Also, this system gives favorable results in complex environments, as
shown in Fig.7.

(a) (b)

Figure 6 – Comparison of reconstruction results with LiveScan3D (a) the 3D
reconstruction results given by LiveScan3D (b) the results given in this paper

(a) (b)

Figure 7 – A scene featuring a Christmas tree (a) the color image (b) the reconstruction
result from one viewpoint

CONCLUSION

In this paper, we have implemented a low-cost system that supports multiple Kinect v2
sensors connected to a single computer. The advantages of this system are high frame
rate and concise architecture. This is mainly ensured by two parts. At the implementation
level, a pipeline design pattern is used, with modules parallelized and separated by FIFO,
and integrated with CPU multi-threading and GPU parallel acceleration. At the algorithm
level, lightweight algorithms are used such as point cloud filtering based on depth
continuity. Finally, as the result shows, the entire system can achieve the camera's
intrinsic frame rate, and no other system to date has been able to achieve that to the best
of this paper's knowledge.

In the future, we plan to integrate more sophisticated algorithms to improve the quality of
the point cloud and explore the feasibility of real-time surface reconstruction.

REFERENCES

[1] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David
Calabrese, Hugues Hoppe, Adam Kirk, and Steve Sulli-van. High-quality streamable
free-viewpoint video. ACM Transactions on Graphics (ToG), 34(4):1–13, 2015.

[2] Sudipta N. Sinha. Multiview Stereo, pages 516–522. Springer US, Boston, MA, 2014.

[3] Berthold KP Horn. Shape from shading: A method for obtaining the shape of a smooth
opaque object from one view. 1970

[4] Dimitrios S Alexiadis, Anargyros Chatzitofis, Nikolaos Zioulis, Olga Zoidi, Georgios
Louizis, Dimitrios Zarpalas, and Petros Daras. An integrated platform for live 3d
human reconstruction and motion capturing. IEEE Transactions on Circuits and
Systems for Video Technology,27(4):798–813, 2016

[5] Marek Kowalski, Jacek Naruniec, and Michal Daniluk. Livescan3d: A fast and
inexpensive 3d data acquisition system for multiple kinect v2 sensors. In 2015
international conference on 3D vision, pages 318–325.IEEE, 2015.

[6] Andrej Satnik, Ebroul Izquierdo, and Richard Orjesek. Multiview 3dsensing and
analysis for high quality point cloud reconstruction. In Tenth International Conference
on Machine Vision (ICMV 2017), volume10696, page 106962K. International Society
for Optics and Photonics,2018.

[7] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, et
al. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth
camera. In Proceedings of the 24th annual ACM symposium on User interface
software and technology, pages 559–568, 2011

[8] Xiongfeng Peng, Liaoyuan Zeng, Wenyi Wang, Zhili Liu, Yifeng Yang, Zhen Zeng, and
Jianwen Chen. A robust and real-time full 3d reconstruction method based on multiple
kinect. In International Conference in Communications, Signal Processing, and
Systems, pages 1420–1428. Springer, 2017

[9] Andrej Satnik and Ebroul Izquierdo. Real-time multi-view volumetric reconstruction of
dynamic scenes using kinect v2. In 2018-3DTV-Conference: The True Vision-Capture,
Transmission and Display of 3DVideo (3DTV-CON), pages 1–4. IEEE, 2018

[10] Andrej Satnik, Robin Ribback, Krishna Chandramouli, GiacomoInches, Mark
Wheatley, and Ebroul Izquierdo. Comparative analysis of real-time multi-view
reconstruction of a sign language interpreter

[11] Michal Tölgyessy, Martin Dekan, L’uboš Chovanec, and Peter Hubin-skỳ. Evaluation
of the azure kinect and its comparison to kinect v1 and kinect v2. Sensors, 21(2):413,
2021

[12] E Lachat, H Macher, MA Mittet, T Landes, and P Grussenmeyer. First experiences
with kinect v2 sensor for close range 3d modelling.The International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5):93, 2015

[13] Lingzhu Xiang, Florian Echtler, Christian Kerl, Thiemo Wiedemeyer, Lars, hanyazou,
Ryan Gordon, Francisco Facioni, laborer2008, RichWareham, Matthias Goldhoorn,
alberth, gaborpapp, Steffen Fuchs, jmtatsch, Joshua Blake, Federico, Henning
Jungkurth, Yuan Mingze, vi-nouz, Dave Coleman, Brendan Burns, Rahul Rawat,
Serguei Mokhov, Paul Reynolds, P.E. Viau, Matthieu Fraissinet-Tachet, Ludique,
James Billingham, and Alistair. libfreenect2: Release 0.2, April 2016.

[14] Andrew Maimone and Henry Fuchs. Encumbrance-free telepresence system with
real-time 3d capture and display using commodity depth cameras. In 2011 10th IEEE
International Symposium on Mixed and Augmented Reality, pages 137–146. IEEE,
2011

[15] Dimitrios S Alexiadis, Dimitrios Zarpalas, and Petros Daras. Real-time, full 3-d
reconstruction of moving foreground objects from multiple consumer depth cameras.
IEEE Transactions on Multimedia,15(2):339–358, 2012.

[16] Tomasz Rybus, T Barciński, J Lisowski, J Nicolau-Kukliński, K Sew-eryn, M
Ciesielska, K Grassmann, J Grygorczuk, M Karczewski, M Kowalski, et al. New planar
air-bearing microgravity simulator for verification of space robotics numerical
simulations and control algorithms. In proceedings of 12th Symposium on Advanced
Space Technologies in Robotics and Automation, 2013

[17] Paul J Besl and Neil D McKay. Method for registration of 3d shapes. In Sensor fusion
IV: control paradigms and data structures, volume 1611, pages 586–606. International
Society for Optics and Photonics, 1992

[18] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In
Proceedings of the 21st annual conference on Computer graphics and interactive
techniques, pages 311–318, 1994

[19] Adrian Hilton, Andrew J Stoddart, John Illingworth, and Terry Windeatt. Reliable
surface reconstruction from multiple range images. In European conference on
computer vision, pages 117–126. Springer,1996.

