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ABSTRACT 

3D reconstruction of dynamic scenes is an important task in the field of 
multimedia which arouses widespread interest in recent years. Although 
several novel 3D applications have been unlocked with the increasing 
popularity of commercial RGB-D cameras like Microsoft Kinect, Azure, and 
Intel RealSense, real-time performance is still a big problem. In this paper, 
an open-solution, low-latency, real-time 3D reconstruction system is 
presented. The proposed system runs in a simple architecture where 
multiple Kinect v2 sensors are connected to a single computer. It consists 
of a series of modules including capture, alignment, and post-processing. 
The data stream of all sensors will pass through these modules in turn, 
generate point clouds, and finally fusion to a single 3D model. To improve 
the real-time performance, this system adopts a pipeline design that uses 
multiple threads to execute all modules concurrently. Besides, the first-in-
first-out feature of the queue is utilized for data transmission and thread 
separation. At last, experimental results are presented to verify the 
system's effectiveness concerning the 3D reconstruction visual quality and 
real-time performance. 

INTRODUCTION 

Real-time 3D reconstruction has emerged as one of the active research topics in the field 
of multimedia and computer graphics. It can be applied to many novel applications such as 
free view video[1], human motion recognition, 3D game interaction, and augmented or 
immersive reality. Most of these applications have high requirements for real-time 
performance. However, although real-time reconstruction techniques are mature in the 
field of static object reconstruction, it is still a big challenge to reconstruct dynamic scenes 
limited by huge amounts of data and the complexity of algorithms. Obtaining the depth 
information of the target scene is the essential for dynamic scene reconstruction, which 
has made it widely studied in recent years. 

According to the way of depth information acquisition, previous researches can be 
classified into two categories, active methods and passive methods. Passive methods 
generally use disparity information[2] and surrounding environment[3] to calculate depth 
map by stereo-matching algorithms. Passive methods do not interact with the 
reconstructed object in the reconstruction process so there is no interference between 
multiple sensors. In contrast, active methods acquire a depth map by emitting lasers or 



        

infrared light to the target object. However, considering that the accuracy and performance 
of the depth estimation algorithm in passive methods cannot meet the requirement of real-
time systems, most researchers turn to active depth sensors such as Time-of-flight(TOF) 
sensors[4,5,6]. 

The existing 3D reconstruction systems based on active depth cameras have many 
drawbacks. First, a multi-sensor system is cumbersome to build due to numerous devices 
and complex system architecture. Next, as for real-time performance, the frame rate of the 
system decreases when the number of sensors increases and the scene becomes larger. 
In terms of practicality, most real-time reconstruction systems are not open-solution. These 
problems are satisfactorily addressed in this paper. 

In this paper, we present an open-solution system based on multiple Kinect v2 sensors. 
The proposed system targets real-time reconstruction of dynamic scenes with the ability to 
acquire full 3D models of moving objects and generate realistic 3D models of dynamic 
scenes through pipelining multiple modules. With the integration of many optimizations 
such as multi-threading and GPU acceleration, each module achieves a balance between 
complexity and quality, making it realistic to reconstruct moving objects. 

The main contributions of our work are as follows: 

⚫ A simple 3D reconstruction system with multiple Kinect v2 sensors that only uses one 
single convenient computer, which can reconstruct dynamic scenes in real-time. 

⚫ Combines multiple optimization methods including multi-threading and GPU 
parallelism thus achieves the sensors' inherent frame rate. 

⚫ The overall system solution will be released and kept updated on 
https://github.com/sjtu-medialab/Kinect3D 

The remaining parts of the paper are organized as follows. First, the existing related works 
are discussed. Next, we describe the hardware architecture of the system. Then the 
pipeline of the system and the corresponding algorithms are described. Finally, the quality 
and real-time performance of the system are presented. 

RELATED WORK 

3D reconstruction has attracted a lot of attention in recent years. Due to the high 
complexity of stereo matching algorithms used for depth estimation and the rapid 
emergence of low-cost RGB-D cameras in recent years, RGB-D sensors are commonly 
used as data acquisition devices in real-time systems. Many of the relevant real-time 
reconstruction systems such as [4,5,6,7,8,9,10] refer to Microsoft Kinect sensors as data 
acquisition devices, since it provides acceptable resolution with affordable cost.  

Microsoft has released three types of depth sensors: Kinect v1, Kinect v2, and azure 
Kinect. Their parameters are examined in [11]. Although the azure Kinect is the successor 
of the previous two generations of sensors, Kinect v2 sensor is still the most widely used 
sensor in research since the Azure Kinect was just released in March 2020. Based on 
Kinect sensors, many real-time systems are proposed. 

LiveScan3D[5] presents an open-source 3D reconstruction system using multiple Kinect 
v2 sensors which can generate high-quality point clouds of target scenes with real-time 
performance. It adopts a server-client distributed system where the clients capture raw 3D 
point clouds and transmit them to the server. As a result, the frame rate gradually 

https://github.com/sjtu-medialab/Kinect3D


        

decreases when the size of point cloud data increases. The experimental results show that 
when the scene size is 2m*2m*2m, the frame rate will be reduced to below 10 fps.  

In [4], a similar multiple depth stream-
based system is proposed with a better 
real-time performance by employing an 
intra-frame compression 
scheme(JPEG for the RGB and LZ4 
entropy compression for the depth 
maps). It also introduces a novel 
framework to evaluate the quality of 
real-time 3D reconstruction systems in 
the absence of ground truth. However, 
both [4] and [5] use a slave-master 
architecture which uses multiple 
computers to distribute the 
computational load. This makes 
system deployment more complicated 
and cumbersome.  

Andrej[6,9] proposes a much simpler 
system in which several Kinect v2 
cameras are connected to a single 
computer. This system achieves improved performance by integrating GPU parallel 
computing. Experiment results show that it processes each camera in an average of 
14.18ms. The disadvantage of such a system is obvious, when the number of sensors is 
more than two, the frame rate cannot meet the real-time requirement.  

The system proposed by this paper is designed concerning previous works, integrating the 
advantages of each system, adopting the simplest system architecture, and conducting a 
lot of optimizations for real-time performance. As a result, achieving the best performance 
at acceptable quality. 

OVERVIEW OF THE SYSTEM 

As demonstrated in Fig.1, the capturing system is composed of multiple Kinect v2 sensors. 
The Kinect v2 sensors are positioned on a circle of radius 𝑟 ∈ [0.5𝑚, 4𝑚] and oriented 
toward the center. Each sensor consists of a regular RGB camera and a depth scanner, 
which can generate color and depth maps simultaneously. The RGB camera is used for 
the acquisition of color maps with a 1920x1080 pixels resolution and the depth scanner 
captures depth maps with a resolution of 512x424[12].  

In terms of the software development kit(SDK), the official SDK provided by Microsoft 
limits its usage to one sensor per computer, which inevitably leads to a complex structure 
of multi-sensor systems. To simplify the system, the system uses an open-source third-
party driver libfreenect2[13], which has been reported to support up to 5 devices through 
USB3.0.  

To capture the RGB-D stream simultaneously, we allocate a separate thread for each 
sensor. Since multiple infrared projectors work simultaneously, the infrared rays emitted by 
different sensors may interfere. However, as confirmed by [14], it has been proved that 
interference is not as strong as expected. Moreover, according to the experimental results 
of [15], interference is mainly manifested in the absence of a few depth pixels at object 

 

Figure 1 – System hardware architecture 



        

boundaries. This has little impact on the system because the overlap areas between 
adjacent sensors can compensate for missing values. 

Fig.2 presents the whole pipeline of the system, which consists of multiple stages that start 
with capturing RGB-D streams and end with an interactive 3D rendering window created 
by OpenGL. 

THE REAL-TIME 3D RECONSTRUCTION ALGORITHM 

In this section, we describe the pipeline and implementation details of the proposed 
system. According to the direction of data flow transmission and processing, this section 
mainly describes four modules of the system in order, which are synchronization, extrinsic 
calibration, removal of overlap regions, and post-processing. 

Synchronization 

Although the official document gives a frame rate of 30 fps, it is observed that the frame 
rate can fluctuate in practice. Therefore, the system allocates a thread dedicated to 
synchronizing all sensors. To synchronize the frames captured by different sensors, we 
employed a post-synchronize procedure which can keep the frame interval within 16 ms 
and the procedure is as follows. 

Considering the depth and color pairs are generated with timestamps, we denote the 

timestamps of RGB-D frames as 𝑡𝑖 , 𝑖 = 1, . . . , 𝑁, where 𝑁 is the total number of sensors. 
When all cameras are started, records the current timestamp as 𝑡0. Then calculate 
timestamp interval for each sensor: 

𝑡𝑖𝑛𝑡
𝑖 = 𝑡𝑖 − 𝑡0, 𝑖 = 1, . . . , 𝑁 

For all timestamp intervals, if exist two sensors 𝑖 and  𝑗 satisfy: 

 𝑡𝑖𝑛𝑡
𝑖 − 𝑡𝑖𝑛𝑡

𝑗
< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

then drop the corresponding overrunning frame. Here the value of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set to 16 
ms, which is half a frame interval. 

 

Figure 2 – Pipeline design of the system  



        

Extrinsic Calibration 

Calibration refers to the process of registering point cloud data from the camera coordinate 
system to the world coordinate system. The transformation relationship can be described 
by a rotation matrix 𝑅3𝑥3 and a translation vector 𝑡3𝑥1, called extrinsic matrix. For each 
sensor, an extrinsic matrix [R t] has to be calculated. 

During the calibration stage, we use a 2D visual marker system proposed in [16] which is 
also used in [5]. When all sensors are oriented to the same center, which is assumed in 
this system, only one marker is needed. And for convenience, this system establishes the 
origin of the world coordinate system at the center of the marker. The marker is required to 
appear in all of the sensors. Each sensor will detect five corner points in the field of view 
as feature points, once the 3D location of the marker is known, the transform matrix that 
transforms any point 𝑥𝑠 from the sensor's coordinate system to a point 𝑥𝑚 in the world 
coordinate system can be calculated: 

 𝑥𝑤 = 𝑅𝑠(𝑥𝑠 − 𝑡𝑠) 

where 𝑡𝑠 is the translation matrix and 𝑅𝑠 is the rotation matrix. 

The disadvantage of marker calibration is that it will be affected by the detection accuracy 
of key points on the plane. In order to reduce the matching error, this system use iterative 
closest points(ICP)[17] to refine the initial estimate. Let 𝑅𝑟  be the rotation matrix and 𝑡𝑟 
the translation matrix, the two steps transform relationship can be combined into: 

𝑥𝑤 = 𝑅𝑟(𝑅𝑠(𝑥𝑠 − 𝑡𝑠) + 𝑡𝑟) 

In the refining stage, an offline thread is deployed due to the high complexity of the ICP 
algorithm. As long as the refine button is pressed, the pipeline outputs a synchronous 
frameset for ICP. After the refining stage is finished, the current frame will be discarded 
and the extrinsic parameters will be updated. The offline mode ensures that the frame rate 
of the system is not affected during the refining process. 

Removal of Overlapping Regions 

The point clouds 
generated from 
different sensors 
inevitably have a large 
portion of overlap 
regions, especially 
between two adjacent 
cameras, resulting in 
many redundant and 
mismatched data in 
overlapping areas. In 
this system, the 
removal of overlap 
regions is performed between every two adjacent sensors. The methodology applied in 
this system is similar to [15,18], which maps the points of one sensor to another through 
the external parameter matrix. In [15], removal of overlap regions is the bottle-neck part 
due to its iterative strategy, normally takes up to several hundreds of milliseconds, which 
forces them to adopt a coarse to fine strategy. This system abandons the iterative features 

 

Figure 3 – Removal of Overlap Point cloud Regions 



        

and implements the algorithm in GPU considering that the mapping of each pixel is 
independent, thus reduces execution time dramatically, just taking a few milliseconds.  

Let A and B be two adjacent sensors, the algorithm implemented in this system is 
illustrated as Fig.3, which will remove the area that overlaps with B in A. This algorithm 
can be summarized as follows: 

1) Forward mapping: For each pixel 𝑝𝐴(𝑥, 𝑦) in A's depth map, there is a corresponding 

3D point 𝑋𝑐
𝐴(𝑥, 𝑦, 𝑧) in the camera coordinate system. To establish mapping 

relationship with camera B, 𝑋𝑐
𝐴(𝑥, 𝑦, 𝑧) must first be forward mapped to the world 

coordinate system: 

 𝑋𝑤
𝐴(𝑥, 𝑦, 𝑧) = 𝑅𝐴(𝑋𝑐

𝐴(𝑥, 𝑦, 𝑧) + 𝑡𝐴) 

where 𝑅𝐴 and 𝑡𝐴 are sensor A's external matrix. 

2) Backward mapping: Backward mapping has two steps, the first step is to project 

𝑋𝑤
𝐴(𝑥, 𝑦) to camera coordinate system of B, the projected points from A to B are 

𝑋𝑐
𝐴𝐵(𝑥, 𝑦, 𝑧) = 𝑅𝐵

−1𝑋𝑤
𝐴(𝑥, 𝑦, 𝑧) − 𝑡𝐵 

The second step is to project 𝑋𝑐
𝐴𝐵(𝑥, 𝑦, 𝑧) to the 2D depth image. The 2D projection 

points are: 

𝑝𝐴𝐵(𝑥, 𝑦) = 𝛱{𝐾𝐵, 𝑋𝑐
𝐴𝐵(𝑥, 𝑦, 𝑧)} 

where 𝛱 represents the 3d to 2D projection and 𝐾𝐵 is the internal parameters of 
camera B. 

3) Overlap determination: Considering a patch centered on 𝑝𝐴𝐵(𝑥, 𝑦), when the depth of 

the points in the patch and 𝑝𝐴𝐵(𝑥, 𝑦) is less than a threshold 𝑇𝑟, it means that the 

current point overlaps with B, then remove 𝑝𝐴(𝑥, 𝑦) from A. The threshold 𝑇𝑟 used in 
this system is 30mm. 

Post processing 

Due to the limitations of the TOF camera, there are many missing and unstable pixels in 
the Kinect v2 depth map, so the reconstructed model contains a lot of noise. Considering 
the high complexity of the filtering algorithm for point clouds, it is one of the major 
difficulties in achieving real-time frame rates.  

Inspired by the reconstruction algorithm "Step Discontinuity Constrained (SDC) 
triangulation" proposed in [19], this system applies the step discontinuity constrain in filter 
and implements an algorithm named “SDC filter”. Considering the pixels of the depth map 
and the 3D points are in a one-to-one correspondence, and the neighborhood relationship 
between depth pixels represents the topology of the 3D space points. The algorithm can 
be described as follows: 

For each pixel 𝑝 = 𝐼𝑧(𝑥, 𝑦), considering its adjacent pixels at the top, down, left and right, 

𝑝𝑡 = 𝐼𝑧(𝑥, 𝑦 − 1), 𝑝𝑑 = 𝐼𝑧(𝑥, 𝑦 + 1), 𝑝𝑙 = 𝐼𝑧(𝑥 − 1, 𝑦) and 𝑝𝑟 = 𝐼𝑧(𝑥 + 1, 𝑦). These five points 
can generate four potential triangles. Take 𝑆1 = {𝑝, 𝑝𝑡, 𝑝𝑙} as an example, it will be 
generated if it satisfies |𝑝 − 𝑝𝑡| < 𝑡 and |𝑝 − 𝑝𝑙| < 𝑡 and|𝑝𝑙 − 𝑝𝑡| < 𝑡, where 𝑡 is a threshold, 
and the value of 𝑡 is 0.015m in this paper. If none of these four potential triangles are 

generated, then the depth pixel 𝑝 = 𝐼𝑧(𝑥, 𝑦) will be removed and so is the corresponding 
3D point. 



        

EXPERIMENT 

In this section, we present the experimental results of the proposed system. The system is 
written in C++ and CUDA C with the operating system Linux Manjaro 64bit. The whole 
system runs in a single computer with an i9-10900K processor, 32-GB RAM, and a CUDA-
enabled NVIDIA RTX 2080Ti GPU. 

Real-time Performance 

The real-time performance of the proposed system is tested by measuring the processing 
time of each module in the system. The experimental condition is 3 sensors and the scene 
size is set to 1.5m*1.5m*1.5m. To make the results more reliable, we capture 1000 
consecutive frames and track the latency of each frame. The result is demonstrated in 
Fig.4. Then we calculate the average latency of each module in Tab.1. Due to the pipeline 
design pattern, all the modules in this system are highly parallel, so the frame rate is 
limited only by the most time-consuming module. As shown in Tab.1, the camera 
acquisition module takes the longest time which is slightly over 33ms and the final average 
frame rate is calculated to be 25-27 fps. However, in most cases, the system works at 30 
fps. The lower average frame rate is the result of frame loss by some unknown agnostic 
problem, which can be seen in Fig.4(a). Under normal circumstances, the interval between 
two frames captured by the sensor is 33ms, but in some occasional cases, the interval 
between two frames is 66ms or even 99ms. This is a problem caused by the hardware, so 
we can still state that this system achieves the inherent sensor frame rate of 30 fps in 
terms of real-time performance. 

 
  

 

(a)                                                                      (b) 

Figure 4 – Performance test of each module. (a) Acquisition RGB-D from sensors. (b) 
Alignment, overlap removal and filter modules 



        

Table 1. Performance results of the system pipeline 

Sensors 
Scene 

size(𝑚3) 

Execution time(ms) 
Frame 

rate capture synchronize alignment 
overlap 
removal 

filter render 

1 

1.0*1.0*1.0 37.447 — 4.350 — 1.995 17.381 26.674 

1.5*1.5*1.5 37.748 — 4.286 — 1.905 17.691 26.460 

2.0*2.0*2.0 37.748 — 4.283 — 1.862 17.613 26.505 

2 

1.0*1.0*1.0 37.951 0.068 7.360 5.826 5.258 18.518 25.897 

1.5*1.5*1.5 37.083 0.099 7.158 5.496 5.872 17.308 25.897 

2.0*2.0*2.0 38.449 0.001 7.699 5.418 5.507 18.893 25.637 

3 

1.0*1.0*1.0 36.582 0.030 14.495 9.724 8.510 17.006 26.935 

1.5*1.5*1.5 36.182 0.105 15.471 9.911 8.510 16.876 27.002 

2.0*2.0*2.0 37.216 0.999 13.828 9.911 9.756 17.401 26.645 

Reconstruction Quality 

The proposed system is a combination of multiple techniques. Fig.5 shows how each 
technique improves the reconstruction quality. As Fig.5(a) shows, where we simply acquire 
RGB-D streams from each sensor and register to world coordinate. The reconstructed 
model obtained has a lot of discrete noisy points, especially at the edges of the object and 

 

(a)                               (b)                                (c)                              (d) 

Figure 5 – Reconstruction quality. (a) Initial point cloud captured from kinect v2 sensors. 
(b) Result after overlapping regions removal. (c) Result after post-processing. (d) Final 

result combining both overlapping regions removal and post-processing. 



        

in the regions where the depth distance is far resulting in missing depth pixels. Fig.5(b) 
shows the result of removing the redundant data in the overlap area of the sensor. Next in 
Fig.5(c), the quality can be greatly improved by using the SDC filter algorithm. Fig.5(d) is 
the final result combining all methods and achieves the best visual quality.  

Besides, to make the results in this paper comparable, we build almost the same scene as 
in LiveScan3D[5] and give the reconstructed results in Figure 6. As can be seen, the 
reconstruction results in this paper have less noise and smoother surfaces, mainly 
benefited from the removal of overlap regions and the step discontinuity constrained 
filtering algorithm. Also, this system gives favorable results in complex environments, as 
shown in Fig.7. 

         

 

(a)                                          (b) 

Figure 6 – Comparison of reconstruction results with LiveScan3D (a) the 3D 
reconstruction results given by LiveScan3D (b) the results given in this paper 

         

(a)                                          (b) 

Figure 7 – A scene featuring a Christmas tree (a) the color image (b) the reconstruction 
result from one viewpoint 



        

 

 

CONCLUSION 

In this paper, we have implemented a low-cost system that supports multiple Kinect v2 
sensors connected to a single computer. The advantages of this system are high frame 
rate and concise architecture. This is mainly ensured by two parts. At the implementation 
level, a pipeline design pattern is used, with modules parallelized and separated by FIFO, 
and integrated with CPU multi-threading and GPU parallel acceleration. At the algorithm 
level, lightweight algorithms are used such as point cloud filtering based on depth 
continuity. Finally, as the result shows, the entire system can achieve the camera's 
intrinsic frame rate, and no other system to date has been able to achieve that to the best 
of this paper's knowledge. 

In the future, we plan to integrate more sophisticated algorithms to improve the quality of 
the point cloud and explore the feasibility of real-time surface reconstruction. 
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