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ABSTRACT  

High-end mobile devices now support displaying video in High Dynamic 

Range (HDR), delivering a significantly enhanced viewing experience over 

Standard Dynamic Range (SDR). However, more energy may be required 

to play HDR, impacting device battery life and reducing overall quality of 

experience. 

We present a new methodology for predicting the real-time energy usage of 

a mobile device playing video content. 37 video clips were encoded into 12 

combinations of different resolution, frame-rate, bit-rate, and dynamic 

range. An external power monitor was used to measure the voltage and 

current drawn by the device while playing the content. These 

measurements were used to train a neural network to predict the energy 

requirements of playing any clip.  

We show that our model can predict the energy usage of videos with RMS 

error of 4.88%, achieving a substantial improvement over existing methods 

that use linear regression, symbolic regression, or trust-region optimisation. 

  

INTRODUCTION  

Video content producers and platform owners strive to deliver the best possible viewing 

experience to customers. Steady improvements to hardware have resulted in mobile 

devices holding the largest share of the video streaming market [1]. One of those 

improvements is the availability on phones of High Dynamic Range (HDR) video, an imaging 

technology that provides greater representation of real-world lighting compared to the 

traditional Low or Standard Dynamic Range (SDR) imaging. Further hardware 

enhancements, which include greater screen resolutions and faster wireless streaming, 

outpace the rate of improvements in Lithium-ion battery technology which is now reaching 

its theoretical limits [2]. Unfortunately, future portable battery technologies which could 

replace Li-ion are still in development and are not ready for commercial deployment [3]. 

In this paper, we describe the method we used to accurately measure the energy usage of 

a mobile device playing video content. These measurements were used to train a neural 



network to predict the energy usage of a video clip based on its intrinsic properties: the 

dynamic range, frame rate, resolution, bit-rate, and pixel luminance (brightness) distribution. 

Our model can be combined with extra information, such as the remaining video duration 

and device battery capacity, to create a system which balances the viewing quality with the 

need to conserve battery. With the pervasive use of mobile devices in modern life, 

preserving battery capacity is something that many more users are aware of. Unfortunately, 

video streaming consumes a huge amount of energy due to the use of the screen, which is 

“the dominant power consumer in battery-operated devices” [4].  

 

Figure 1 - Diagram of an adaptive system which incorporates energy predictions. 

The key contribution of this paper is a neural network-based method to predict the energy 

usage of a mobile device playing video content, relying only on the properties of the video 

content itself. This model can be seen on the left-hand side of Figure 1. Previous work in 

this area has focused solely on SDR content [5]. This paper describes a model that applies 

to both SDR and HDR content, and which is also more accurate than previous methods. 

RELATED WORK  

This work spans multiple fields of research, including video streaming, power monitoring on 

mobile devices and HDR content. Previous research in each field is discussed briefly below. 

High Dynamic Range Video 

SDR video is only capable of representing around 8 stops of dynamic range, whereas the 

human visual system can perceive around 14 stops simultaneously [6]. HDR imaging 

represents a broader range of luminance values than SDR and can exceed 14 stops. HDR 

video has gradually become more feasible on mobile devices due to several advancements 

in technology [7], in particular the HDR video compression standards HDR10, HDR10+ and 

Dolby Vision [8]. Before this, most consumer displays (including those on mobile devices) 

were not capable of natively displaying HDR content. Instead, a range of tone mapping 

operators (TMOs) were used to map the luminance values of HDR content to the luminance 

range that an SDR display is capable of reproducing [9]. 

Pramanik et al. [10] conducted a state-of-the-art review of smartphone energy usage in four 

key areas: power modelling, power management, battery development, and battery 

hazards. None of the studies reviewed in this paper focused on the impact of HDR video 

content on energy usage. 



Video Streaming 

The predominant streaming technology for adapting video quality in response to fluctuating 

bandwidth availability is Adaptive Bit-Rate (ABR) streaming, of which DASH [11] and HLS 

[12] are two examples. With ABR streaming, a video is encoded into several streams of 

different bit-rate (and therefore different quality), with each stream being stored as multiple 

small media segments. When a client device requests a new media segment, the system 

can dynamically choose a quality level based on the available bandwidth. If the bandwidth 

drops, the client attempts to download a lower-quality version of the next segment to prevent 

buffering and other unfavourable behaviour. 

Several methods exist to adapt video quality to reduce its energy impact. The system by 

Kennedy et al. [13], BaSe-AMy, adapts based on the stream duration and packet loss rate, 

which can reduce battery usage by around 18%. The DEAS system by Ding and Muntean 

[14], which adapts based on the energy usage characteristics of different device 

components, shows up to 40% improved energy performance over similar systems. 

Furthermore, Lee et al. [15] propose a scheme that reduces spatial resolution of the image, 

which can reduce energy consumption by around 50% compared to conventional 

adaptation. 

It is also possible to adapt based on user preference or engagement. Evidence shows that 

video buffering leads to a drop in user engagement. Krishnan and Sitaraman [16] showed 

that viewers experiencing buffering interruptions exceeding 1% of the total video run-time 

chose to watch 5.02% less of the video than those that did not. Dobrian et al. [17] conclude 

in their paper that “the bit-rate is especially critical for live (sports) content'”, highlighting the 

importance of maintaining a balance between high bit-rate and preventing buffering periods 

when viewing live sports.  

Mobile Device Power Monitoring 

Three broad strategies for establishing the ground truth energy usage of a process emerge 

from the literature. 

The first, simplest methods utilise the battery percentage indicator on the device's 

notification bar [18] [19]. This can be useful for comparing the energy usage of long tasks, 

but it is imprecise for short tasks. Also, as the battery percentage indicator may not 

accurately represent the underlying battery characteristics [20], it is unsuitable for our work. 

The second set of methods involve directly polling the battery's fuel gauge using a software 

solution to measure real-time voltage and current draw. This data is far more accurate than 

the battery percentage method but is difficult to reproduce across devices because the fuel 

gauge cannot always be accessed easily [21]. This approach facilitates real-time battery 

monitoring, with a small margin of error between it and the true energy usage [22]. 

The final technique is to use external power measurement hardware, such as sense 

resistors [23], a multimeter [24], or specialised hardware (e.g. the Monsoon Power Monitor) 

[25]. These methods are far more accurate than the others, but they typically require 

physical access to, or replacement of, the battery. 

Battery Lifetime Estimation 

Carroll and Heiser [23] measured the energy usage of different mobile device components 

and estimated the total battery life of several usage profiles which use those components in 

different proportions. Zhao et al. [18] built a context-aware battery lifetime prediction system 

by using multiple linear regression, with a maximum error of 6%. Building on both works, 

Nusawat, Adulkasem, and Chantrapornchai [26] demonstrated a data mining approach for 



battery life prediction, focusing on multilayer perceptron (MLP) and support vector machine 

(SVM)-based models. A state-of-the-art review of smartphone battery state-of-charge (SoC) 

prediction papers by Singh et al. [27] identifies the key studies. 

METHOD 

This section introduces the methodology for our study and presents an overview of each 

major step. A full overview of the experiment can be seen in Figure 2.

 

Figure 2 – An overview of the major steps in this study. 

Since Lithium-ion batteries have almost reached their theoretical limits, the onus on 

maintaining reasonable battery life has shifted partially onto software developers, who must 

balance the technical requirements of their apps, including HDR, with the limited battery life 

of devices. We may potentially save a significant amount of battery life by adapting video 

quality based on the energy requirements of each quality level. To this end, the purpose of 

this study is to create a model which can accurately predict the energy usage of both HDR 

and SDR video on mobiles. The first step involves building a high-quality dataset containing 

the real-world energy usage of different types of videos running on a mobile device. This is 

described in detail in the Data Collection section. 

The raw data obtained in this experiment is used to train an artificial neural network. Once 

the network has been trained, we can use it to predict the energy usage of any video clip, 

including unseen footage, based only on the properties of the video content itself. This 

network could theoretically be implemented to predict the energy usage of both on-demand 

content and live-streamed footage. This phase of the study is described in the Model section. 

DATA COLLECTION 

Design 

We select a set of video clips and encode them to several quality levels. Each clip is then 

played on an HDR-compatible mobile device and external hardware is used to log the 

instantaneous voltage and current of the device for the duration of the video. From these 

values, we can calculate the total energy usage of the device playing the video and build a 

dataset linking the properties of the video content and the energy usage of that content. 

We chose 22 clips provided by BT Sport and 15 clips from the Stuttgart HDR dataset [28]. 

These clips were chosen due to the contrast in each clip between bright areas, such as 

sunlight and bright sparks, and low-light shadow areas. 

The following subsections set out the variables we are interested in, the equipment we used 

for the measurements, the control environment, and the measurement procedure. 



Variables 

Several factors influence the amount of 

energy used by a mobile device while it is 

playing the video, including: 

• The intrinsic properties of the 

content itself (bit-rate, frame-rate, 

resolution, dynamic range, and 

luminance profile). 

• The environment in which the 

content is played, including other 

apps on the device. 

• The user’s preference settings, 

such as the device’s global 

maximum brightness. 

For this study, we are interested in the 

effect of changing the bit-rate, frame-rate, 

resolution, and dynamic range of the 

content. Video delivery pipelines typically 

bundle settings into distinct quality profiles, 

so we chose to encode six quality settings 

based on the bit-rate, frame-rate, and 

resolution. Furthermore, we also consider the impact of dynamic range on the energy usage. 

‘HDR video’ is a term that encompasses several formats with a higher dynamic range than 

SDR content. One of the most widespread of these formats is HDR-10, which itself is a 

collection of several technologies, including the Perceptual Quantiser (PQ) transfer function 

[29], a bit-depth of 10 bits per pixel per channel, and the BT.2020 colour space [30]. With 

that in mind, we encode each clip at each quality level with the H.265 codec in both HDR-

10 and SDR using FFmpeg, resulting in 12 quality levels as listed in Table 1. We use the 

Main profile for the SDR clips and the Main 10 profile for the HDR clips. 

The energy usage of individual pixels on an OLED screen is proportional to the luminance 

of that pixel [4]. Consequently, the distribution of pixel luminance across the video may 

greatly influence the energy usage of the video. Our dataset contains a luminance histogram 

with 10 bins to approximate the distribution of dark and light pixels across the video, along 

with the mean, median, minimum, maximum, variance, and interquartile range (IQR) of the 

luminance in the video. An example of one luminance histogram is shown in Figure 3. 

 

Figure 3 - The luminance histogram and thumbnail for the Football 5 clip. 

Resolution 

(pixels) 

Frame 

rate 

(fps) 

Dynamic 

Range 

Bit 

rate 

(kbit/s) 

1920×1080 50 HDR-10 6500 

1920×1080 50 SDR 6500 

1280×720 50 HDR-10 5000 

1280×720 50 SDR 5000 

1280×720 25 HDR-10 2500 

1280×720 25 SDR 2500 

720×408 25 HDR-10 1800 

720×408 25 SDR 1800 

720×408 25 HDR-10 1200 

720×408 25 SDR 1200 

640×360 25 HDR-10 800 

640×360 25 SDR 800 

Table 1 - Streaming configurations 

 



Equipment 

The test device is a Samsung Galaxy S9+, one 

of the earliest devices to support HDR-10. Its 

display has a maximum resolution of 2960×1440 

pixels and a brightness of 1130nits in high 

brightness mode [31]. This is far above the peak 

brightness of SDR devices, which is typically 

between 100-600nits [7]. 

A Monsoon High Voltage Power Monitor is used 

to bypass the device's battery, supply a stable 

current to the device, and measure the 

instantaneous voltage and current drawn by the 

mobile device with a sampling frequency of 

500Hz. The power monitor is attached to a 

computer via USB to log the voltage and current 

drawn by the device (see Figure 4). 

Environment 

The ambient environment around the device, including temperature and humidity, can 

impact the energy usage of the device, as can background tasks and other apps running at 

the same time as the video. The following control environment was used to minimise the 

effect of other variables on the energy usage. 

• Screen brightness was locked to the maximum supported by the device, and adaptive 

brightness was disabled. 

• Screen timeout was locked to the maximum of 10 minutes 

• Unrelated hardware features such as Wifi, 4G, Bluetooth, NFC, mobile hotspot, and 

location services were disabled. 

• All user apps were closed, besides any apps directly involved with this experiment. 

• The external environment – a temperature of 20°C, humidity of around 40%, and a 

light level of about 300 lux - was kept constant. 

Measurement Procedure 

At the start of the data collection phase, the device was connected to the Monsoon Power 

Monitor and placed in the control environment. The phone was turned on and left alone until 

the operating system loaded and start-up tasks finished.  At this stage, the power monitor 

recorded a stable current draw of around 100mA by the device. 

For each measurement, the phone’s default Video Player app was opened, and a video clip 

was picked at random from the set of clips and played from device memory while the 

instantaneous voltage and current were logged. The process was repeated until all clips had 

been played three times. The total energy usage E, in Joules, of the device playing each 

clip was calculated using the following equation: 

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

500
∑ 𝑉𝑡

𝑇

𝑡=1
∙ 𝐼𝑡 

where T is the number of timesteps, 𝑉𝑡 and 𝐼𝑡 are the instantaneous voltage and current 

respectively, and 
1

500
 is the time, in seconds, between measurements. The mean of the three 

measurements for each clip was taken to obtain the final energy usage value for that clip. 

The dataset contained raw energy usage values between 38.9J and 101.5, with a mean of 

62.4J and standard deviation of 12.6J. 

Figure 4 - An overview of the setup for 
data collection. 



MODEL 

Artificial neural networks (ANNs) [32] [33] are capable of learning non-linear relationships 

between a set of input and target variables. Once trained, a network can predict a target 

value from a set of inputs quickly, making it suitable for a system which needs to evaluate 

the energy usage of streamed video content in real-time. However, due to the nature of 

neural networks themselves, it will be difficult to determine which variables have the largest 

overall impact on the energy usage just by looking at the trained model. 

This section explores the architecture and performance of the prediction model in detail. 

Network Structure 

The model, shown in Figure 5, is a feedforward neural network with a single branch of layers 

with the goal of performing a regression to predict energy usage from the video properties 

described previously. It comprises an input layer, three hidden layers of size 512, and an 

output layer. Each layer is itself made up of ‘sub-layers’ which give them unique behaviour. 

 

Figure 5 - A diagram showing how each of the layers of the model connect to each other. 

The input layer takes each feature as input and applies z-score normalisation so that the 

network is not sensitive to features with different orders of magnitude. The output layer is a 

fully connected layer of size one with a regression layer. 

The three hidden layers are fully connected layers of size 512. Each one uses batch 

normalisation to prevent internal covariate shift and 25% dropout to prevent co-dependence 

between network layers, which could prevent the model from generalising to unseen data.  

Activation Function 

Each hidden layer uses a Leaky Rectified Linear Unit (ReLU) activation function which 

introduces non-linearity into the model. With standard ReLU, neurons may have their 

weights set to zero, which effectively makes them `dead', as seen in this equation: 

𝑓(𝑥) = 𝑓(𝑥) = {
𝑥, if 𝑥 > 0
0, otherwise

 



Leaky ReLU solves this problem by introducing a small gradient for values below zero where 

the ReLU curve usually equals zero, allowing negative activations [34]: 

𝑓(𝑥) = 𝑓(𝑥) = {
𝑥, if 𝑥 > 0

0.01𝑥, otherwise
 

Loss Function 

The goal of the network is to produce predictions that are as close to the ground truth as 

possible. A loss function is used to calculate the gap between real and predicted values. For 

a typical regression problem like this one, mean squared error (MSE) is used as the loss 

function. The mean squared error is given by: 

MSE =
1

𝑁
∑ (𝑡𝑖 − 𝑦𝑖)2

𝑁

𝑖=1
 

where, for this model, there are N observations, t is the vector of predicted energy usage 

values, and y is the vector of real energy usage values. 

Features 

The training data comprises the 20 input features listed below, each being a characteristic 

of an encoded video clip, and the energy usage in Joules as the target feature. 

• Pixel count (horizontal and vertical resolution values multiplied together). 

• Frame rate, in frames per second (fps). 

• Bit-rate, in kilobits per second (kbit/s). 

• Bit-depth (10 for HDR-10 footage and 8 for SDR). 

• Luminance histogram, where each of the 10 bins is a separate feature. 

• Minimum, maximum, mean, median, variance, and IQR of the video luminance, each 

one being a separate feature. 

Training 

The model uses 250 epochs with a batch size of 16. This is sufficiently high to ensure the 

network converges. Learning rate decay is used to avoid the network overshooting (with a 

high learning rate) or not converging (with a low learning rate). The learning rate for this 

network starts relatively high at 0.01 and decreases by a factor of 5 every 50 epochs. 

The dataset contains 444 observations (37 clips each with 12 settings). We trained with 5-

fold cross validation, where the data was divided into five roughly equal partitions and used 

to train five models. For each model, one partition became the validation dataset and the 

other four were combined to form the training dataset. The validation partition rotated 

between models, meaning that each of the five models was trained on around 355 

observations and tested with around 89 unseen observations. 

Performance 

Due to the relatively high number of epochs, each model took a minute or two to train. Error! 

Reference source not found. shows the loss function over the training process, where the 



steep drop in the first 100 epochs can clearly be seen, followed by the reduced rate of 

change due to the decreasing learning rate.  

 

Figure 6 - A plot of the loss function during training. The orange line is a 
moving average of all training iterations from the last epoch. 

For each of the five cross-validated models, we obtained a single root mean squared error 

(RMSE) value to evaluate the performance of the model, with smaller values indicating 

better performance. 

Table 2 shows a comparison with the earlier prediction methods of linear regression [35], 

symbolic regression [36], and trust-region optimisation [37]. 

Method Per-model RMSE (J) for the full dataset 

1 2 3 4 5 Mean 

Linear Regression [35] 5.9449 8.0751 5.8554 9.6679 6.4167 7.1920 

Symbolic Regression [36] 5.7115 6.5024 5.5956 6.1089 5.9332 5.9703 

Trust-region Solver [37] 6.5565 6.8244 6.6056 7.1643 6.6969 6.7695 

Our Method 5.4468 4.1956 4.6342 5.7735 4.6951 4.9494 

Table 2 - Validation error (RMSE) of each type of model. 

In terms of mean performance, our neural network-based method performs 31.9% better 

than linear regression, 26.9% better than trust-region optimisation, and 17.1% better than 

symbolic regression on the full dataset.  

DISCUSSION 

The results suggests that the model can accurately predict the energy usage of a section of 

video content on the test device, whether the device is playing HDR or SDR content. 

The energy measurement methodology employed in these experiments can be reproduced 

across most devices currently on the market, although it is necessary to perform a 

complicated battery bypass on almost all of them due to the decline in phones with 

removable batteries. The process we detail in this paper can be employed on any type of 

video content, including other forms of HDR such as HDR-10+. Furthermore, a model like 

this is not restrained to just phones; a similar approach could extend to predicting the energy 



usage on other portable devices, provided the energy usage can be measured and used to 

calibrate the model. 

This model could be incorporated into an existing ABR streaming system, where the choice 

of video quality for the next video segment would be based not just on the bandwidth 

requirements, but also the energy requirements and the state of the device’s battery. 

Limitations 

Much of the error in the model's predictions may be attributable to small errors in measuring 

the energy usage of the mobile device caused by background tasks. Although the video 

clips were played in a randomised order three times each, it is difficult to entirely remove the 

impact of these background processes during the measurement phase. Further study could 

investigate methods for modelling the background task impact separately. This would allow 

the model to take only the energy usage related to displaying the video content into account 

and would likely result in even more accurate predictions. 

CONCLUSION AND FUTURE WORK 

This work provides a methodology for establishing the link between objective video metrics 

and energy usage on a mobile device. This methodology has been shown to be sufficiently 

robust in a setting with a relatively small amount of content, and there are potential 

improvements that can be made to reduce the error rate of the predictions made by the 

model, as described in the Limitations section. The model may also benefit from additional 

data points, such as different codecs, which may have an impact on the energy usage of 

the mobile device while displaying the video content. 

The model we presented in this paper predicts energy usage based on video characteristics. 

To incorporate the findings into existing adaptive streaming systems, future work will be 

needed to develop a system which can make decisions based on the predictions, as seen 

in Figure 1. This includes choosing to adapt to a lower-quality video stream when the device 

battery runs low, even if the bandwidth available to the device could support higher quality. 

However, there may be instances where the energy usage for a piece of content under two 

different quality profiles is roughly equivalent (for example, a high-resolution SDR stream, 

compared to a low-resolution HDR stream). In such cases, it is difficult to choose one stream 

over the other, especially if they also have similar bandwidth requirements. Therefore, 

further work is needed to build a system which adapts content based on the subjective 

preference of users in cases where there is a tie between bandwidth or energy usage. This 

decision procedure could incorporate additional subjective variables such as the ambient 

viewing environment. 
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