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ABSTRACT 

The demand for remote work and online entertainment is surging annually, 
placing heightened challenge on bandwidth usage and experience quality 
of applications such as video conferencing. Video codecs in traditional video 
conferencing systems typically utilize a block-based hybrid coding 
architecture, which often have sub-optimal rate distortion performance and 
computational resource consumption in these scenarios. In addition, in low 
bit rate scenarios due to low bandwidth networks, traditional codecs may 
lead to a disastrous experience. In this paper, we propose an ultra-low 
bitrate video conferencing system with flexible virtual access patterns. 
Conventional video codecs are partially or fully replaced to get ultra-low 
bitrate while ensuring a smooth communication experience. Furthermore, 
the three access patterns, face encoding, realistic and virtual avatar, can be 
driven with either video or audio modality and generate videos in different 
domain, providing a possible future video conferencing paradigm. The video 
captured by camera is not necessarily transmitted, protecting privacy of the 
users. Experiments demonstrate the excellent rate distortion quality and 
real-time performance of the proposed system. 

 

INTRODUCTION 

Since the emergence of Coronavirus pandemic in 2020, the industry and academia have 
seen substantial growth rates in terms of increased consumption and accelerated innovation 
topics, from remote collaboration to online entertainment. While the burst of demand for 
video conferencing and live entertainment presents massive opportunities, it also poses 
hungry demand for bandwidth. Conventional video systems typically encode captured video 
with a block-based hybrid encoding scheme, which is versatile and stable. However, for 
some specific scenarios such as video conference or virtual avatar in live streaming, block-
based coding scheme is insufficient to decrease the semantic redundancy. We have the 
following findings and analyses: 

(1) In video conferencing scenario, the video to be encoded is mainly about talking faces in 
a fixed background. General video encoding schemes, such as High Efficiency Video 
Coding (HEVC/H.265) [1], Versatile Video Coding (VVC/H.266) [2], and  AV1 [3], is 
designed for arbitrary videos and focus on recovering pixel-level fidelity. However, we 
argue that the general codec is sub-optimal in video scenarios for the following reasons. 
First, the background images in video conferencing human faces are often static and 



        

keep unchanged while the audiences will focus on the face region during the conference. 
Second, human faces commonly share similar structures and semantic meanings (e.g., 
eyes, mouth, and nose, etc.), which provide the opportunity to recover face details from 
less semantic cues by learning priors from face datasets. Recently, deep learning 
methods [4]–[8] have generation capability based on abridged information, promising 
potential in face video compression. These methods typically use some sparse 
representations like key points in place of some or all of the video frames, and use deep 
learning technique to recover these frames before rendering. In industry, NVIDIA has 
also released platforms and suites for audio and video communication with Artificial 
Intelligence (AI), such as NVIDIA Maxine [9], where the AI video compression solution 
also transports key points of the face at the sender and generates a reconstruction at 
the receiver with AI methods. 

(2) As the animation industry has made a sharp increase in the market, the Virtual YouTuber 
(VTuber) have also grown rapidly. Many VTubers have shown their commercial value in 
the live streaming market and have a large number of fans on numerous social platforms 
such as YouTube, Niconico and Bilibili. In addition to live streaming, using virtual avatars 
to access video conferencing is becoming a new trend. Standardization organizations 
have also paid attention to such trends. Moving Picture, Audio and Data Coding by 
Artificial Intelligence (MPAI) publishes the second version of Multimodal Conversation 
(MPAI-MMC) standard [10], where one use case is Avatar-Based Videoconference 
(ABV) [11]. The video to be encoded in virtual video conferencing and live streaming is 
just a virtual avatar doing slight movements in fixed scenes, which is similar to video 
conferencing except the faces. Furthermore, the virtual avatar itself is driven by some 
key points extracted from the human actor, which takes less data volume than encoded 
frames. Therefore, transferring key points and rendering them in real time on the client 
side may be an attractive solution to reduce bandwidth consumption. 

(3) With the rise of new concepts such as metaverse, besides face encoding and virtual 
avatar, a realistic avatar is also a possible replacement of user’s real face in video 
conferences in the future. In this scenario, the conference system allows the user to 
animate any predefined avatar or his/her own face image via her real-time facial 
dynamics or even only his/her audios. To enable various access patterns, we propose 
an effective method for photo-realistic talking face rendering in video conferencing 
system. Our proposed method utilizes either the videos captured by a camera or the 
audio signal recorded by a recorder to synthesize virtual avatar or realistic talking face 
videos. It is worth mentioning that both the modalities of visual signal or audio signal are 
acceptable. With the proposed pipeline, one can join a conference with his/her voice 
and transfer the synthesized videos, which abolishes the necessity of real-time camera 
recording and ensure the user privacy not to be violated.  

To overcome the sub-optimality of traditional encoding schemes in the above scenarios, and 
to explore new forms of entertainment, this paper proposes an ultra-low bitrate video 
conferencing system with various virtual access patterns. In this paper, we combine the 
latest developments in face video compression, virtual avatar and realistic talking face 
generation method with real time communication (RTC) to provide a practical video 
conferencing system. 

The main contribution of this paper are as follows: 



        

⚫ This paper combines face video compression, virtual avatar and realistic face rendering 
with RTC. To the best of our knowledge, we make novel attempt to explore a new 
paradigm for video conferencing system which is not seen in prior studies. 

⚫ The proposed video conferencing system provides acceptable and better results than 
conventional video codec schemes under ultra-low bitrate constraints, meet the needs 
of real-time communication in bandwidth-constrained network environments. 

⚫ Our developed prototype system is ready for practical deployment and will soon be 
released on https://github.com/sjtu-medialab/virtualConference.  

The remainder of this paper is organized as follows. We first discuss related works in the 
following section. Next, we demonstrate the architecture of the whole system and describe 
each of the modules in detail. Then, we conduct adequate experiments to indicate the 
performance of the system in bitrate and latency aspects. Finally, we summarize the entire 
work and discuss the future directions on our video conferencing system. 

RELATED WORK 

Video Conference and Protocol 

Since the COVID-19 pandemic, the demand for Real-Time Communication (RTC) 
applications has increased rapidly. Especially, online video conference became the most 
important way for people to communicate, work and study [12]. Users can access the video 
conferencing system in various ways, such as mobile devices, personal computer, and room 
systems. While with the expansion of application scale and the computing pressure arisen 
by advanced features, most systems provide cloud-based services, instead of traditional on-
premises video system. From the perspective of multimedia technologies, the video 
conferencing system realizes the seamless exchange of audio, video and content through 
audio and video coding, quality optimization, encryption, transmission and many other 
modules. To realize good Quality of Experience (QoE) in complex network environment, 
video conferencing system has strict requirements of latency and bandwidth utilization. 
Therefore, transmission scheme, especially the choice of protocol is of vital importance.  

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the two most 
widely used transport-layer protocols. While for video conferencing system, timeliness is 
more important than reliability. Thus, although TCP can guarantee sequenced and reliable 
transmission, its high-latency caused by head-of-line blocking and simple retransmission 
scheme makes TCP obsolete by RTC applications. Most modern video conferencing 
systems, such as WebRTC-based ones [13], commonly apply UDP-based protocols: Real-
Time Transport Protocol (RTP) [14] and its variant Secure Real-time Transport Protocol 
(SRTP) [15]. As representative enterprise in the video conference industry, Zoom reportedly 
proposed a custom extension of RTP [16].  

Recently, another UDP-based protocol Quick UDP Internet Connections (QUIC) [17] has 
aroused widespread concern because of its excellent performance and high flexibility. QUIC 
only needs one Round-Trip Time (RTT) to establish a reliable and secure connection, which 
is much more efficient than TCP's three-way handshake. Moreover, QUIC has the ability to 
handle stream-multiplexing and connection migration, which further improved transmission 
performance under unstable circumstances. Besides, QUIC has pluggable congestion 
control module, which makes the congestion control algorithm upgrading very convenient. 



        

The prospect of QUIC is so bright that there are many studies on adopting it into real-time 
video streaming, such as RTP over QUIC [18] and extension of unreliable transmission [19]. 

Face Encoding 

Conventional video encoding techniques utilize some manually designed schemes to 
eliminate redundant information. Based on hybrid video compression framework, many 
conventional video encoding methods have been proposed like HEVC and VVC. Moreover, 
VVC represents the most advanced conventional method. 

With the development of deep learning techniques, many generation methods achieve 
considerable advances in talking face generation which can be applied to talking face video 
compression. Feng et al. [4] proposed a generative video compression framework based on 
FSGAN [20] which achieve a low bit rate around 1 KB/s. FOMM [21] uses key points and 
Jacobians to represent sparse motion which then is used to animate talking face. Omitting 
the Jacobians, Tang et al. [6] only relies on key points to characterize motion and propose 
a hybrid compression scheme for face video which achieves better quality and lower bit rate. 
Oquab et al. [5] designs a mobile-capable architecture based on FOMM while the quality 
may not be satisfactory. Combining 3D information, Wang et al. [7] proposes a framework 
that can generate free-view talking face video, while the training process is too hard, 
consuming significant time and computing resources. Based on FOMM, Konuko et al. [8] 
utilizes one raw frame as reference frame and add generated frames to reference frame 
pool, which may cause error accumulation. 

Realistic Talking Face Generation 

Realistic talking face generation aims at generating talking faces that match the input 
conditions including audio, facial landmarks, segmentation maps, or text. In the past years, 
plenty of methods have been proposed to achieve realistic talking face generation. One 
branch of methods utilizes audio as input to synthesize face videos. Guo et al. [22] proposes 
a NeRF-based method that takes audio speech and facial parameters ad input to generate 
talking face. However, NeRF works in modelling static scene but fails to deal with dynamic 
motions in talking videos. Consequently, [22] easily synthesize videos that suffer from 
jittering issues. Thies et al. [23] proposes to estimate the expressions from audio feature 
and renders photo-realistic features from neural textures with a simple U-Net. Wav2Lip [24] 
synthesizes lips from audio and background images. On another branch of methods that 
use text, facial landmarks, or segmentation maps as input to generate the target face images. 
Chen et al. [25] regresses facial landmarks to render facial images. Xue et al. [26] proposes 
adopting the face segmentation map to animate face images. However, the reconstruction 
quality of such method heavily depends on the accuracy of segmentations, and is not 
practical for realistic talking face generation. The text-based method [27] generates talking 
videos with text input. However, to bridge the gap between text and image, [27] needs to 
optimize the renderer in dozens of hours of training videos for single person.  

Audio Encoding 

Conventional audio codecs combine traditional coding tools such as linear prediction 
techniques and modified discrete cosine transform, to deliver high coding efficiency over 
different content types, bitrates and sampling rates, while ensuring low-latency for real-time 



        

audio communications. Opus[28], EVS[29], and USAC[30] are state-of-the-art (SOTA) 
conventional audio codecs. 

End-to-end neural audio codecs rely on data-driven methods to learn efficient audio 
representations, instead of relying on handcrafted signal processing components. Lyra [31] 
is a generative model that encodes quantized mel-spectrogram features of speech, which 
are decoded with an auto-regressive WaveGRU model to achieve impressive results at 3 
kbps. SoundStream [32] is a novel neural audio codec which relies on a model architecture 
composed by a fully convolutional encoder/decoder network and a residual vector quantizer, 
which are trained jointly end-to-end. As is reported in [32], it achieves SOTA results in all 
bitrates. 

SYSTEM ARCHITECTURE 

Overview 

The proposed system provides three access patterns, which are face encoding, virtual 
avatar and realistic avatar. These three workflows share a similar system architecture, but 
differ in the way each module is processed and the data flows. 

 

Figure 1 System architecture for face encoding workflow. The blue and yellow boxes 
indicate the parts of the workflow for virtual avatar and realistic avatar, respectively. 

The system architecture is shown in Figure 1, which is actually the system architecture of 
face encoding workflow. There are three data flows in the system, key frame, point and 
audio. All of the three are used in the face encoding workflow. The latter two are used in the 
virtual avatar workflow while the realistic avatar workflow needs only audio flow, as shown 
in the blue and yellow boxes in Figure 1. 

The modules are connected to each other via some FIFOs in which data flows through. For 
clarity of presentation, different data flows use different FIFOs in the figure, which is not the 
necessary the case in the actual system. 

video

key frame

point

bit

bit

Sender

Receiver: FIFO : output

: input

: virtual avatar

: realistic avatar

ingest process encode send

render process decode receive

packet

audio audio bit

packet

packet

video

key frame

point

bit

bit

packet

audio audio bit

packet

packet



        

Face Encoding Workflow 

Face encoding workflow provides a similar experience to traditional video conferencing, but 
with significant bitrate savings at the same quality because of the generation-based face 
encoding scheme. 

Ingestion and rendering 
The ingest module in the sender is responsible for interacting with the camera and the 
microphone to obtain video and audio data. The data is then put into the FIFOs in frames 
and passed to the subsequent modules. 

The rendering module in the receiver is responsible for displaying the acquired video while 
playing the acquired audio. 

Processing 
To encode face videos with the generation-based scheme, the method in [6] is used in our 
system. The procedure is shown in Figure 2. 

In the encoder, according to key frame frequency f, video frames are divided into key frames 
and non-key frames. Specifically, the first, (f+1)th, (2f+1)th, ⋯, frames are key frames while 
others are non-key frames. For key frames, the data is passed into the video encoding 
module, while non-key frames are fed to Key Point Detector (KPD) to extract key points. The 
extracted points are sent to the point encoding module to be encoded into bitstream. 

In decoder, the video bitstream and the key point bitstream are decoded to key frames and 
key points of non-key frames. When key points of non-key frames and the nearest key frame 
before and after them are available, they are sent to the Generator (GEN) to generate non-
key frames. 

  

Figure 2 The procedure of [6]. In our system, the encoder is in the sender side while the 
decoder is in the receiver side, respectively. 

The KPD is used to detect ten key points for each frame. Each key point is a two-dimensional 
normalized coordinate containing two float point numbers, representing sparse motion for 
talking faces.  

The GEN firstly combines key points of both key frame and non-key frames to create sparse 
motion which are then used to warp key frame. The warped key frame and sparse motion 
are used to predict dense motion and occlusion map. Then, the original key frames are 

         

      
         

             

   

         

         

         

         

         

   

         

              

             

         



        

warped by dense motion and are masked by occlusion map. Finally, the warped features 
are decoded by a decoder network to generate reconstructed non-key frames. 

In our system, the encoder structure and the decoder structure are located at the sender 
and receiver sides, respectively. On sender side, key frames are sent directly to the next 
encoding module. Non-key frames are sent to the KPD to extract key points first. The 
extracted key points are then fed to the encoding module. In receive side, when a new key 
frame is available, it is fed to the GEN with the previous key frame and the key points of the 
non-key frames between them to generate the images of non-key frames. 

The audio data is sent directly to the next module without any processing. 

Encoding and decoding 
In encoding module, the key frames are encoded with low delay configured video codec 
without bi-directional interpolated prediction frames for the purpose of not introducing 
additional coding latency. Relatively high quality is needed for key frames to guarantee the 
quality of the generated non-key frames. 

The key points of non-key frames are quantized to integers of eight or twelve bits, intra and 
inter predicted and coded with zero order Exponential-Golomb coding and adaptive 
arithmetic coding. 

For audio, Lyra in [31], [33] is used in our system because it is open source and has been 
designed specifically for speech coding scenarios with ultra-low bit rates and acceptable 
quality. 

In the decoding module, the corresponding decoders for key frames, key points and audio 
are used to get the reconstructed data. 

Sending and receiving 
Because our system needs flexible and customized application layer design, we directly use 
QUIC as underlying transport protocol. Quiche [34] is an implementation of the QUIC 
transport protocol and HTTP/3 as specified by the IETF, which implements QUIC kernel in 
Rust, and provides C/C++ APIs. Based on Quiche library, we designed send and receive 
module. 

Send module fetches encoded data and package them into QUIC packets. Then packets 
are sent to peer in accordance with the order from control modules of QUIC such as flow 
control, congestion control and priority scheduling. Receive module receives packets and 
feedback states information to guide further packet sending. Besides, it unpacks packets 
and sends them into subsequent processing. 

Virtual Avatar Workflow 

In the virtual avatar workflow, the modules are similar to that in face encoding workflow, 
except the process module. Besides, because of the fact that instead of keyframes, only the 
key points of all frames are needed to drive the avatar, the key frame data flow is unused in 
this workflow. The audio flow is exactly the same as that in face encoding, while the key 
point flow is slightly different. 

In our system, we use kalidokit [35] as a bridge between human face landmarks and virtual 
avatar driving parameters. Kalidokit is a blendshape and kinematics solver for Mediapipe 
[36] face and eyes tracking models, compatible with many SOTA face landmark detection 



        

methods. It takes 3D landmarks and calculates simple euler rotations and blendshape face 
values. 

In the process module, a video frame is first fed into the face landmark detection sub-module 
to get the face landmarks. The landmarks are further processed by kalidokit to obtain the 
avatar drive parameters, which is sent to the net encoding module. The reason why drive 
parameters are passed to the next module instead of face landmarks is that their data 
volume is much smaller than face landmarks. 

The drive parameters are some float numbers in different ranges, which are quantized 
according to the range. The quantized parameters are intra and inter predicted and encoded 
with zero order Exponential-Golomb coding and adaptive arithmetic coding to become 
bitstream. 

In receive side, after the parameters of a frame are decoded and dequantized, the avatar 
model is driven with them. 

Realistic Avatar Workflow 

In the realistic avatar workflow, the modules are also similar to that in virtual avatar workflow, 
except the process module, which is described next. 

Processing 
Different from previous work, we utilize a 3D-based method to synthesize realistic talking 
face videos. Our system can take either audio or an additional driven image sequence as 
input, then generate novel talking face videos that is in synchronization with the audio track 
or the other image sequence.  

To synthesize realistic talking face videos, we propose a comprehensive framework that can 
be driven by either audio input or another video faces. In brief, we first estimate facial shape 
and pose parameters from driving face images via [37], and combine the shape and pose 
parameters with 3D face expressions predicted from audio input using [38]. Then, we render 
face shapes with 3D Morphable Model [37] in GPU. Finally, we utilize a neural render to 
synthesize realistic images from input face shapes. Figure 3 shows the framework for virtual 
avatar and realistic avatar. 

 

Figure 3 Our proposed framework for virtual avatar and realistic avatar.  



        

To leverage the input of driving face images, we first estimate the facial landmarks or 3D 
facial expressions. The facial landmarks are used to analyse the motions of driving face and 
generate the videos of virtual avatar with kalidokit. The 3D facial parameters, including 
shape, pose and expression, are used for the generation of realistic avatar, where we first 
adopt a GPU render to synthesize face shapes, and then generate realistic avatar with a 
neural renderer. To use only the audio track as input to generate talking avatar, we extract 
the audio features to Mel-spectrum and predict the corresponding 3D face expressions. The 
estimated expressions are then combined with the shape and pose parameters (predefined 
if we only use audio) to render face shapes. Note that our method can use either the 
expressions from driving faces or from the audios. This allows the user to hide his face from 
the camera and generate talking face with only his speech.  

This framework has two clear merits for video conferencing system. First, we can generate 
the talking face videos of both virtual avatar and realistic avatar in one system. Second, our 
framework can use different modalities of input to generate talking videos, which can better 
protect user privacy. 

Synthesize summary 
In the realistic avatar workflow, the process module in the sender side is responsible for 
extracting 3D facial parameters or just pass the audio data if we only use audio to render. 
The process module in the receiver side performs the whole framework with the acquired 
parameters (if have) and audio data to synthesize realistic images. 

Besides audio encoding, the encode and decode module encodes and decodes the 3D 
facial parameters using the same way in virtual avatar workflow if we transfer them and use 
in the realistic avatar generation. 

EXPERIMENT 

Environment 

In this section, we present the experimental results of the proposed system. The system is 
written in python with the operating system ubuntu 20.04 64bit. The whole system runs in a 
single computer with an i9-10900 CPU, 32-GB RAM, and a CUDA enabled NVIDIA GTX 
1080Ti GPU. 

 

Figure 4 The screenshots of the system in operation. 

Left (a): face encoding

Mid (b): virtual avatar

Right (c): realistic avatar

In each subfigure, the local

and remote user are on the

left and right, respectively.  



        

Figure 4 shows the screenshots of the system in operation, subfigure (a) in the grey boxes 
stands for face encoding, (b) in the blue boxes for virtual avatar and (c) in the green boxes 
for realistic avatar. In each subfigure, the local and remote user are on the left and right, 
respectively. In the subfigure (a), most frames of the remote user are generated locally. In 
(b), the net grid and yellow dot indicate the extracted key points. The points are transmitted 
to the other side and drive the virtual avatar. In (c), the realistic avatars are driven with audio. 
More demos can be seen on our GitHub repository. 

To test the proposed system, we use two computers, one PC with the above devices and 
the other a regular laptop. During the experiment, the whole system is running on the PC 
while just a receive and a send module is running on the laptop, which means the laptop 
receives the data from the PC and send it back. With this approach, the experiment requires 
only one high-performance device. 

Bitrate 

For a video conferencing system, the most basic and critical metrics are bitrate and latency. 
Test video is 906 frames captured from a 720p 25fps camera. The frames are cropped and 
resized to 256x256 in face encoding and the key frame frequency is set to 5. The bitrate 
performance of the proposed system is shown in Table 1. 

Table 1 The bitrate performance of the proposed system. 

Workflow Face encoding Virtual avatar Realistic avatar 

Bitrate(kbps) 7.38(video)+3(audio) 0.77(video)+3(audio) 3(audio) 

For audio encoding, lyra extracts features from speech every 40ms and are then compress 
them for transmission at a bitrate of 3kbps. 

For face encoding, to encode key frames, [6] uses VVenC [39], which is an open source and 
optimized VVC encoder implementation, to obtain the optimal coding performance and 
relatively high coding efficiency. However, even VVenC and VVdeC are still quite far from 
practical use because of the extremely high coding complexity of VVC and its resulting 
coding latency. Therefore, we use x265 [40] as the video encoder for encoding key frames 
because of its stability, fast encoding speed and decent RD performance. For comparison, 
x265 uses the similar parameters to directly encode the original video at bitrate of 29.25kbps, 
while maintaining almost the same PSNR. 

Latency 

The RTT between the test devices is 2.48ms, tested with the Ping command. The latency 
performance of the proposed system is shown in Table 2. The audio flow latency is only in 
transfer (4.17ms) and decoding (60ms), thus is not shown in the table. 

Table 2 The latency performance of the proposed system. K stands for key frame, and NK 
stands for non-key frame. The --- means nothing is processed here besides audio. 

Workflow 
Face encoding 

Virtual avatar Realistic avatar 
K NK 

Process(sender) (ms) <0.1 10.91 14.44 --- 

Encode (ms) 1.13 0.14 0.12 --- 

Transfer (ms) 4.31 3.69 4.09 --- 

Decode (ms) 0.14 <0.1 <0.1 --- 



        

Process(receiver) (ms) <0.1 39.08 <0.1 79.61 

End to end (ms) 205.57 60.10 139.61 

The end-to-end latency for face encoding is relatively high because the generation of non-
key frames requires the next key frame, which introduces latency of waiting other frames. 
When the next key frame is available, the last key frame can be displayed while the non-key 
frames are generated simultaneously without extra latency. 

For virtual avatar workflow, the main latency bottleneck is audio decoding because the video 
related modules only consume a minimum amount of computing time. For realistic avatar 
workflow, audio decoding and avatar driving each causes half of the latency.  

CONCLUSION 

In this paper, we propose and implement an ultra-low bitrate video conferencing system with 
flexible virtual access patterns. Based on the SOTA developments in face encoding, virtual 
and realistic avatar driving, we achieve the goal of ultra-low bitrate by encoding and 
transmitting semantic and control information, partially or fully replacing video frames. 
Besides saving bandwidth usage, the virtual and realistic avatar access pattern protect the 
user privacy by not transmitting the captured video frames, but just some key points and 
audio data. The system, which will be open source soon, provides a good quality of 
experience and is easy to actually deploy. 

In the future, we plan to investigate adaptive switching strategy for different access methods 
based on network conditions, which will further improve the flexibility and QoS of video 
conferencing system 
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