

DATA COMPRESSION FOR 6 DEGREES OF FREEDOM VIRTUAL REALITY
APPLICATIONS

S. Poularakis, K. Mockford and G Meardi

V-Nova Limited, UK

ABSTRACT

6 Degrees of Freedom (DoF) are used in Virtual Reality (VR)

applications to enhance the user experience compared to the

standard 3DoF solutions. Due to its sparse nature, 6DoF

information is typically represented in a point cloud form, where

each element describes the position of a point in the 3D space, as

well as its attributes (e.g., colour and transparency). Although it

enhances user experience, 6 DoF requires a higher volume of data

compared to 3DoF, which has made content distribution challenging

and has also limited its applications to high-end specialised

machines.

The aim of our work was to design a novel point cloud compression

scheme to allow 6DoF VR applications to run in real-time on high-

end consumer devices, such as gaming laptop and desktop

machines. Although our solution was designed specifically for the

PresenZ 6 DOF VR movies format, it may be easily applied on other

volumetric video formats as well.

INTRODUCTION

In a typical Virtual Reality (VR) scenario, Degrees of Freedom (DoF) are used to track

the motion of a headset-wearing user within a three-dimensional (3D) space and adjust

accordingly the image that the user views. 3 DoF applications track only rotational

movement around the x, y, and z axes (known as pitch, yaw, roll), while 6DoF

applications also track translational movement (surging, swaying, heaving), allowing

for additional effects, such as moving forward/backward, left/right, and up/down [1, 2].

In addition to enhanced user experience, 6DoF VR can help reduce motion sickness

and feelings of disorientation, by providing a better sense of presence [10].

Due to its sparse nature, 6 DoF information is typically represented in a point cloud

form, where each element describes the 3D position of a point, as well as its color,

transparency, orientation, and motion. It may also contain additional data, such as

information about the camera(s) used to capture the 3D view. The actual number of

points depends on the complexity of the visual scene: a typical frame may consist of

over 5 million points.

Although it enhances user experience, 6 DoF requires a higher volume of data

compared to 3DoF, which has made content distribution challenging and has also

limited its applications to high-end specialised machines. The key challenges that one

needs to address are: 1) high data entropy, which typically exceeds the capacity of

conventional communication channels, such as the 500 MB/s of Solid-State Drives

(SSD) [3], and 2) real-time video rendering requirements at relatively high frame rates

(30 fps). In this work, we describe our approach towards addressing the above

challenges using a novel data compression scheme, designed specifically for point

cloud datasets.

Our data compression format describes each frame individually, and consists of a fixed

header layer, as well as several optional data layers. The fixed header layer describes

basic information, such as the number of points and the used color space, as well as

the types of coding tools and techniques used for various point cloud subgroups and

their attributes. Depending on the information included in the fixed header, additional

header layers may be present in the bitstream, further describing encoding methods,

parameters, and metadata. Finally, additional core layers are used to store the

encoded values for each attribute.

We also designed and implemented a codec API, that allows encoding of a series of

point cloud frames and decoding it in real-time on high-end laptops and gaming

desktop machines. Our actual encoder and decoder implementations were developed

in C++, utilizing techniques such as multi-threading and IntelTM Single-Instruction-

Multiple-Data (SIMD) intrinsics [4, 5].

This paper discusses background work for point cloud compression and VR

applications, then describes our approach in detail, our experimental results,

conclusions and discusses potential further developments.

BACKGROUND AND RELATED WORK

Presenz VR system

PresenZ [6] is a volumetric movie format that allows 6 degrees of freedom in precomputed

images with a Virtual Reality (VR) headset. Unlike 360° movies, with PresenZ the viewer is

able to move inside the image and get closer to objects or characters, creating a real sense

of scale and immersion, feeling like you are part of the action.

Figure 1- A screenshot from the "Construct" VR movie (courtesy of Presenz)

PresenZ VR technology enables the creation of VR images and movies with 6 DOF from

conventional 3D models via point cloud datasets. The created point clouds are then

rendered in real time and displayed in a VR headset allowing viewing in 6DoF. The point

cloud framerate is usually 25 or 30 fps, and the points that are moving in each frame contain

motion vectors to interpolate between frames to allow smooth movement in VR.

An essential element of PresenZ VR is the Zone of View (ZOV). The ZOV is a volume box,

inside which the VR user can move freely and have a proper perspective change on the pre-

rendered 3D scene. PresenZ makes a render from the ZOV, gathering all the information

that is possible to see from within this “zone”. In contrast, a 3DoF VR system uses a

perspective camera projection centred around a single point of view (or focal point), limiting

the user’s experience, even if the VR headset has positional tracking. This is the main cause

of cybersickness, discomfort and poor immersion in 3DoF VR systems [6].

The PresenZ VR system originally used the BLOSC [8] algorithm to compress the 6DoF

point cloud data. While BLOSC offers fast decoding, it results in high bitrates (typically higher

than 500 MB/s), which limits this approach to expensive systems equipped with NVMe SSD

drives.

Description of Presenz VR data fields

The position of each point in a point cloud is described by its X, Y, Z coordinates in a

Cartesian space. The X and Y coordinates correspond to a 2D projection on a sensor (such

as a camera), while the Z coordinate relates to the distance from the camera. Each point

has multiple data attributes, which include color information for the left and right eye, the

size and opacity of the point, a normal vector [11], a camera index, and motion vectors to

describe point motion in time. Typically, most of the points have the same value for both

eyes, although values may differ such as when there are stereo reflection effects on window

and other reflective surfaces.

A VR movie is formed as a sequence of consecutive point cloud sets (termed as frames).

The number of points in each frame varies depending on how many points will be covered

(occluded) and uncovered by camera movements. For example, when there are thin objects

close to the viewer, more objects can be uncovered as the camera is allowed to move

upwards/downwards/left/right/forward/backwards and capture points behind the close

object. Most frames contain around 4 to 5 million points.

Some attributes, such as the left and right eye colour, can be encoded in a lossy manner

without a significant degradation of the VR user experience and the perceived visual quality.

On the contrary, some other attributes, such as size and camera index, must remain intact,

otherwise very noticeable errors will appear when viewing the point cloud (e.g. points being

in the wrong position or holes appearing in objects).

Presenz VR Point Cloud Codec Requirements

To enable a 6DOF VR movie to be played on a high-end gaming PC or laptop equipped with

a conventional SSD drive requires the compressed VR movie to have a data rate lower than

the 500 MB/s whilst keeping the decoding processes simple enough to allow 30 frames per

second to be decoded, and for the video quality to be excellent to provide a truly immersive

experience. Hence the need for a data compression codec tuned for point clouds.

Point cloud compression

A point cloud is a flexible way to represent a set of individual 3D points. Each point has a

3D position as well as some other attributes such as colour, surface normal, etc [9].

Due to the wide range of point cloud data-based applications, the Moving Picture Experts

Group (MPEG) began developing 3D point cloud compression standards in 2017. MPEG’s

work is divided into two parts [9, 14]: Video-based point cloud compression (V-PCC), which

is appropriate for point sets with a relatively uniform distribution of points, and Geometry-

based (G-PCC), which is appropriate for more sparse distributions. G-PCC is the most

relevant to our work, as we also focus on sparser distributions.

MPEG G-PCC [7, 18] provides several alternative methods for to signal the occupied points

in the point cloud are occupied including a standard octree representation, and a direct (x,

y, z) representation, and a combination of octree and a triangular surface representation

known as triangle soup.

MPEG G-PCC also defines several methods for attribute encoding, including Region

Adaptive Hierarchical Transform (RAHT) which is similar to wavelet transforms in the 2D

space, and Layer of Detail (LoD) generation where an attribute is predicted from already

coded points in the current or subsequent layers.

Another codec that we considered was Google Draco [15], an open-source mesh and point

cloud compression codec. The techniques for encoding point cloud occupancy are similar

to G-PCC except that kd-tree structures are used rather than octrees. Draco uses similar

techniques to G-PCC for coding the attributes.

In the spring of 2020, when work started on developing a point cloud compression codec to

meet Presenz VR’s requirements, MPEG G-PCC was still at an early stage of development,

and so was judged to not have all the tools and techniques necessary to fulfil the

requirements. One of the key missing capabilities was a temporal frame prediction scheme,

although it is a planned G-PCC feature [18]. Google Draco also does not include a temporal

prediction mode.

Hence the decision was made to develop a proprietary solution, utilizing the in-house

knowledge gained through the development of hierarchical codecs such as SMPTE ST-2117

VC-6 [16] and MPEG-5 Part 2 (LCEVC) [17].

Similar to G-PCC, our scheme uses either octrees or direct (x, y, z) representations for

coding the geometry of the occupied points in the point cloud, and various prediction and

arithmetic encoding methods to encode the point attributes.

Our scheme organizes the data into independent subsets and the techniques used are

designed to allow massive parallelization of the coding process. It also supports both intra

and temporal prediction, allowing the codec to take advantage of point similarities across

consecutive frames and therefore encode points at much lower bitrates compared to the

intra mode. Additionally, we wanted our scheme to be flexible, so that it can be easily

extended to encode different point cloud formats.

OUR APPROACH

General structure

Our approach begins by encoding the position of each 3D point within each point cloud

frame. This encoding reorders the points, with the new order being preserved throughout

the encoding and decoding processes. The purpose of the point reordering is to take

advantage of any structural similarities between adjacent points and thus achieve better

compression through differential coding and other similar techniques. Each attribute is then

encoded separately.

When there is a sequence of frames, the first frame is encoded as above (termed as Intra

mode). Each subsequent frame may be encoded in Intra mode too, or it may be encoded

based on its preceding frame, where points can be copied between frames with a correction

for the colour, providing improved compression and decoding speed. We term the later

mode as Temporal mode.

Compression methods

Octree representation

An octree may be used to encode the X, Y, and Z coordinates of each point. Starting with a

cube (with sides with a length of a power of two that is large enough to enclose every point),

the points are separated into 8 equally sized sub-cubes (the length of the sub-cube sides

will be half the length of the sides of the original cube). 8 bits are used to show which of

these 8 sub-cubes contain points, using a 0 to indicate that no points are in the sub-cube

and a 1 to show there is at least one point included. The order of the bits, starting from the

least significant one, is given by the order that the cubes are checked. The first cube checked

is the one closest to (0,0,0). This splitting is repeated, splitting each non-empty cube to 8

equally sized cubes, until the side length of the cubes becomes a predetermined power of

two.

Each of the cubes in the final layer of the octree is referenced by its top left corner

coordinates. The 8-bit codes show how the octree was split and are entropy encoded. The

order of the codes is given in a Breadth-First-Search (BFS) manner for the first seven levels

of the octree. Finally, for each actual data point, we encode its difference to the top-left

corner coordinates of the smallest containing cube.

XYZ coding

If an octree is not used for encoding the position of each point, then the X, Y, and Z values

can be encoded separately. The first step is sorting the point coordinates and splitting them

to high (most-significant) and low (least-significant) bits. The actual number of low bits is

defined in the header (typically 2 or 4). When ignoring the low bits, any duplicates in the

Figure 2 - An illustration of an octree and how it splits a 3D cube into sub-cubes [12]

combined high bits of X, Y, and Z are counted and removed. The high bits then give the

positions of the cubes that would be found at a corresponding level of an octree. They may

then be differentially coded (which is signalled in the bitstream) and finally entropy encoded.

The low bits are handled in the same manner as in the octree method where they are given

a fixed number of bits per value, and they are added directly to the bitstream.

Pre-processing

After the values of each attribute have been sorted according to the order given by the

position encoding method, the values can be pre-processed to facilitate later encoding. The

possible methods used in this step are: (1) differential coding, and (2) grouping the points

(normally based on the octree) and then subtracting an average from each group of values

of the attribute. These average values for each group are then differentially coded and

entropy coded. The attributes that can be lossy encoded may be quantized at some user-

defined or data-adaptive levels.

Sparsification

After the pre-processing of the attribute values, it is likely that there will be many zeros. To

reduce entropy and the number of values that need to be decoded, we introduce a method

termed as sparsification. The sparsification method groups multiple values together, checks

if a whole group is zero-valued, and if so then this zero group can be removed from further

encoding.

For a fixed size N, each data subgroup of size N, starting from the beginning and moving

along N values each time, is checked to see if all the values are zero. A bitarray is created,

containing a 1 for each group that contains any non-zero values, and a 0 for each group that

contains only zeros. This bitarray is subsequently run-length encoded, where only the first

symbol, which is either a 0 or 1, and the length of each run are needed. There are only two

possible values in the bitarray and so the value of each run alternates between these.

Figure 3 An example of sparsification with N = 4

Figure 3 shows an example with N = 4 and how the bitarray that identifies the groups

containing all zeros is run length encoded.

Entropy coding

After pre-processing and sparsification, entropy coding methods are used to encode the

data of each attribute, as well as information about the octree and temporal scheme. The

entropy coding method used is either Huffman or range encoding. While range encoding

can result in more efficient compression, in practice we used Huffman more frequently, as it

offers improved decoding speed.

Temporal scheme

Our temporal scheme is applied on consecutive frames in a sequence to efficiently encode

static objects in the scene, such as buildings and the ground. A point is marked as temporal

if it exactly matches a point in the previous frame in terms of location and attributes.

However, by allowing some flexibility in the attributes, especially the colour ones, more

points can be encoded as temporal. In that case, we need to signal the differences (deltas)

between the temporal points and their matching points at the previous frame.

For instance, as objects move throughout the sequence of frames, they may cast shadows

over the otherwise static points, slightly altering their colour attributes. Other attributes, such

as the normal, do not change between frames and so no differences need to be encoded.

So that the decoder knows which points to copy from the previous frame, a bitarray is

created with a length equal to the number of points in the previous frame, where each bit

corresponds to a single point and signals whether the point should be copied to the current

frame when decoding. The points copied from the previous frame only have differences in

the colour attributes, which are encoded in a similar fashion to the attribute values, where

they are quantized, sparsified, and entropy encoded.

Bitstream format

Our bitstream format contains all the necessary information to decode a point cloud frame,

and it is comprised of a few main data layers. First, there is the fixed-size header layer,

containing the number of points within the point cloud frame, information about the colour

space and attributes encoded, the sizes of each of the following sections of the bitstream,

and some information showing the pre-processing methods needed to decode the points.

Following this layer, there are four more sections of the bitstream: (1) the temporal section,

(2) the attribute headers section, (3) the point position section, and (4) the attribute payload

section.

Temporal Section

The temporal section contains a temporal bitarray that shows which points are encoded in

temporal mode and which in intra mode. It also contains correction residuals that need to be

applied to the temporal mode points during decoding, as well as the reference points from

the previous frame.

In particular, the temporal section begins with a header, including the number of temporal

points, the size of the payload, the attributes with non-zero temporal differences, and

information about the run-length encoded bitarray mentioned above (length of the

compressed array in bytes, and number of actual array values).

After the header, the temporal header contains a payload part: For each of the attributes

that need a correction, the metadata and payload sizes are stored. The temporal header

concludes with a metadata and payload part: the bitstream includes the entropy coding

metadata for the temporal bitarray and its payload, followed by the metadata and payload

for each of the attributes with non-zero differences.

Attribute headers section

This section contains information about the encoding method used for each attribute. Each

attribute has a separate header which contains the pre-processing method that is used, the

quantisation parameter (when necessary), the data average, the data transform type, and

entropy coding metadata. Sparsification information follows, including the sparsification

group size and the entropy encoding metadata for the sparsification bitarray.

Point position section

This part contains the data for decoding the position of each point. This data may be

structured as either an octree or as separately encoded point coordinates (XYZ coding).

After decoding, both methods provide the non-empty cubes with a given side length (which

is always a power of two).

In the case of the octree, it first optionally contains the number of points within each cube at

a given level of the octree that can be used for separating the attribute values to groups with

different averages. Then it contains the number of octree codes that are included in the full

octree, and the entropy encoding metadata and payload so that they can be decoded. Next

in the bitstream is how many points are in each of the final level octree cubes.

The optional part of the octree section can be calculated while decoding the octree but is

included to increase decoding speed, while it also allows the size of the groups to not exactly

match the number of points in a level of the octree.

In the case of the separately encoded point coordinates (XYZ coding), first the bitarray

contains the method used to encode the coordinates, such as differential coding, how the

values were split into high and low bits, and how duplicate values of the high bits were

handled. It then contains an array of sizes for each coordinate giving the metadata and

payload sizes, finally followed by the metadata and payloads.

Finally, for both methods the bitarray contains for each point a fixed length code to encode

where in each final level cube the points are.

Attributes payloads section

This part contains the entropy encoded payloads for each attribute.

EXPERIMENTAL RESULTS

Implementation details

We implemented the encoder and decoder in C++. To improve the encoding and decoding

performance, we utilized multi-threading and IntelTM Single-Instruction-Multiple-Data

(SIMD) intrinsics. We also designed and implemented a codec API, which was integrated in

the PresenZ VR workflow and was used in our subsequent tests on content provided by

PresenZ.

Compression efficiency

The PresenZ VR system originally used the BLOSC [8] algorithm to compress the 6DoF

point cloud data. BLOSC bitrates on the testing content averaged 457 MB/s (Megabytes per

second) at 25 fps but could peak much higher for complex images.

When compressed using our encoder, the average bitrate was reduced to 93 MB/s, and

peak rate to only 210 MB/s thus reducing the bitrate to well within the capabilities of

conventional Solid State Drives (SSD).

The gain data compression compared to BLOSC depends on the similarity of the points

between frames. For example, on one sequence with minor changes between frames the

original BLOSC compressed size was 242MB/s and the new compressed size only 0.7MB/s.

For a sequence with a lot of movement of points between each frame the original size was

130MB/s and the new compressed size 42MB/s. Our encoder was operated in a variable

bitrate, constant quality mode. Detailed results for several VR sequences taken from the

“Contstruct” VR movie [13] are shown on Table 1.

Computational efficiency

Our point cloud decoder needed to operate at 30 fps, to allow smooth viewing of the

rendered VR movie. The following results were obtained on a laptop with an Intel i7-10875H

CPU with 32 GB 3200MHz RAM. Our experiments show that we can achieve around 4-5

fps for encoding (using a non-optimized encoder) and 40+ fps when decoding. For

rendering, we used a NVIDIA GeForce RTX 2080 Super 8 GB graphics card. For our

experiments we used an Oculus Quest 2 VR headset.

The decoding speed is highly dependent on the encoded bitrate, which is dependent on the

scene complexity, as illustrated in Table 1.

Sequence
Number

of frames
BLOSC MB/s Compressed MB/s

Max achievable

decoding fps

902 1400 747 106 106

903 830 429 70 129

904 642 794 210 54

905 1038 409 109 104

906 580 163 20 160

907 853 523 126 96

908 1005 456 149 84

909 1105 630 70 129

910 1312 180 49 160

1000 480 159 47 156

Credits 258 5.4 4 135

Total 9503 457 93 118

CONCLUSIONS

The primary aim of developing a 6 DOF VR point cloud compression codec to enable the

playback of 6 DOF VR movies generated by Presenz VR on high end gaming PCs was met,

and the Construct VR volumetric movie was made publicly available [13].

Using the knowledge gained from developing the VC-6 (SMPTE ST 2117) and LCEVC

(MPEG-5 Part 2) codecs and adopting an innovative approach to exploiting temporal

redundancy between point-cloud frames we were able to compress the 6 DOF VR movie to

average data rates under 100 MB/s whilst maintaining the quality required to provide a

compelling VR experience, and doing so in such a way that the decoding and rendering can

be performed by typical high end gaming laptop and desktop machines.

The VR compression codec we have developed provides a flexible framework for further

innovation and is capable of being tuned to address other VR use cases. Future work

includes enhancing and automating the encoding mode decisions to provide even greater

compression performance, and further optimization of the encoder and decoder

implementations.

In addition to the distribution of 6 DOF VR movies, other potential use cases include virtual

production, medical imaging, and of course the metaverse.

REFERENCES

1. Barnard D. 2019. Degrees of Freedom (DoF): 3-DoF vs 6-DoF for VR Headset Selection.

https://virtualspeech.com/blog/degrees-of-freedom-vr

https://virtualspeech.com/blog/degrees-of-freedom-vr

2. Degrees of freedom (mechanics) April 2022

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

3. Solid State Drive. April 2022

https://en.wikipedia.org/wiki/Solid-state_drive

4. Streaming SIMD Extensions April 2022

https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

5. Intel Intrinsics Guide April 2022

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

6. Presenz VR March 2022

https://www.presenzvr.com/

7. Schnabel R.and Klein R., 2006 Octree-based Point-Cloud Compression

https://diglib.eg.org/xmlui/bitstream/handle/10.2312/SPBG.SPBG06.111-120/111-

120.pdf?sequence=1

8. BLOSC In Depth April 2022

https://www.blosc.org/pages/blosc in-depth

9. D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai, “An

overview of ongoing point cloud compression standardization activities: video-based (V-

PCC) and geometry-based (G-PCC),” APSIPA Transactions on Signal and Information

Processing, vol. 9, 2020.

https://mpeg-pcc.org/index.php/publications/an-overview-of-ongoing-point-cloud-

compression-standardization-activities-video-based-v-pcc-and-geometry-based-g-pcc/

10. Thompson S. April 2020. Motion Sickness in VR: Why it happens and how to minimise

it https://virtualspeech.com/blog/motion-sickness-vr?ref=footer

11. Normal (geometry)

https://en.wikipedia.org/wiki/Normal_(geometry)

12. Octree. March 2010 https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg

Licence: https://creativecommons.org/licenses/by-sa/3.0/

13. Construct VR – The volumetric movie – available on steam

https://store.steampowered.com/app/1674620/Construct_VR__The_Volumetric_Movie/

14. G-PCC codec description, MPEG 3D Graphics Coding, ISO/IEC JTC 1/SC 29/WG 7 N

00271, Serial Number 21244, January 2022.

15. Google Draco

16. SMPTE ST 2117-1 VC-6

17. MPEG-5 Part 2 LCEVC

18. Mekuria, R.N, Blom, C.L, & César Garcia, P.S. (2017). Design, implementation and

evaluation of a point cloud codec for Tele-Immersive Video. IEEE Transactions on Circuits

and Systems for Video Technology, 27(4), 828–842. doi:10.1109/TCSVT.2016.2543039

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://www.presenzvr.com/
https://diglib.eg.org/xmlui/bitstream/handle/10.2312/SPBG.SPBG06.111-120/111-120.pdf?sequence=1
https://diglib.eg.org/xmlui/bitstream/handle/10.2312/SPBG.SPBG06.111-120/111-120.pdf?sequence=1
https://www.blosc.org/pages/blosc%20in-depth
https://mpeg-pcc.org/index.php/publications/an-overview-of-ongoing-point-cloud-compression-standardization-activities-video-based-v-pcc-and-geometry-based-g-pcc/
https://mpeg-pcc.org/index.php/publications/an-overview-of-ongoing-point-cloud-compression-standardization-activities-video-based-v-pcc-and-geometry-based-g-pcc/
https://virtualspeech.com/blog/motion-sickness-vr?ref=footer
https://en.wikipedia.org/wiki/Normal_(geometry)
https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://store.steampowered.com/app/1674620/Construct_VR__The_Volumetric_Movie/

ACKNOWLEDGEMENTS

The authors would like to thank Tristan Salome and Jeroen De Coninck from Presenz for

their help and support in the development and integration of the codec into the Presenz VR

workflow and for the use of their 6 DOF VR movie content.

