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ABSTRACT  

6 Degrees of Freedom (DoF) are used in Virtual Reality (VR) 

applications to enhance the user experience compared to the 

standard 3DoF solutions. Due to its sparse nature, 6DoF 

information is typically represented in a point cloud form, where 

each element describes the position of a point in the 3D space, as 

well as its attributes (e.g., colour and transparency). Although it 

enhances user experience, 6 DoF requires a higher volume of data 

compared to 3DoF, which has made content distribution challenging 

and has also limited its applications to high-end specialised 

machines.  

The aim of our work was to design a novel point cloud compression 

scheme to allow 6DoF VR applications to run in real-time on high-

end consumer devices, such as gaming laptop and desktop 

machines. Although our solution was designed specifically for the 

PresenZ 6 DOF VR movies format, it may be easily applied on other 

volumetric video formats as well.  

  

INTRODUCTION  

In a typical Virtual Reality (VR) scenario, Degrees of Freedom (DoF) are used to track 

the motion of a headset-wearing user within a three-dimensional (3D) space and adjust 

accordingly the image that the user views. 3 DoF applications track only rotational 

movement around the x, y, and z axes (known as pitch, yaw, roll), while 6DoF 

applications also track translational movement (surging, swaying, heaving), allowing 

for additional effects, such as moving forward/backward, left/right, and up/down [1, 2]. 

In addition to enhanced user experience, 6DoF VR can help reduce motion sickness 

and feelings of disorientation, by providing a better sense of presence [10]. 

Due to its sparse nature, 6 DoF information is typically represented in a point cloud 

form, where each element describes the 3D position of a point, as well as its color, 

transparency, orientation, and motion. It may also contain additional data, such as 

information about the camera(s) used to capture the 3D view. The actual number of 



 
 
points depends on the complexity of the visual scene: a typical frame may consist of 

over 5 million points. 

Although it enhances user experience, 6 DoF requires a higher volume of data 

compared to 3DoF, which has made content distribution challenging and has also 

limited its applications to high-end specialised machines. The key challenges that one 

needs to address are: 1) high data entropy, which typically exceeds the capacity of 

conventional communication channels, such as the 500 MB/s of Solid-State Drives 

(SSD) [3], and 2) real-time video rendering requirements at relatively high frame rates 

(30 fps). In this work, we describe our approach towards addressing the above 

challenges using a novel data compression scheme, designed specifically for point 

cloud datasets. 

Our data compression format describes each frame individually, and consists of a fixed 

header layer, as well as several optional data layers. The fixed header layer describes 

basic information, such as the number of points and the used color space, as well as 

the types of coding tools and techniques used for various point cloud subgroups and 

their attributes. Depending on the information included in the fixed header, additional 

header layers may be present in the bitstream, further describing encoding methods, 

parameters, and metadata. Finally, additional core layers are used to store the 

encoded values for each attribute. 

We also designed and implemented a codec API, that allows encoding of a series of 

point cloud frames and decoding it in real-time on high-end laptops and gaming 

desktop machines. Our actual encoder and decoder implementations were developed 

in C++, utilizing techniques such as multi-threading and IntelTM Single-Instruction-

Multiple-Data (SIMD) intrinsics [4, 5]. 

This paper discusses background work for point cloud compression and VR 

applications, then describes our approach in detail, our experimental results, 

conclusions and discusses potential further developments. 



 
 
BACKGROUND AND RELATED WORK 

Presenz VR system 

PresenZ [6] is a volumetric movie format that allows 6 degrees of freedom in precomputed 

images with a Virtual Reality (VR) headset. Unlike 360° movies, with PresenZ the viewer is 

able to move inside the image and get closer to objects or characters, creating a real sense 

of scale and immersion, feeling like you are part of the action. 

Figure 1- A screenshot from the "Construct" VR movie (courtesy of Presenz) 

PresenZ VR technology enables the creation of VR images and movies with 6 DOF from 

conventional 3D models via point cloud datasets. The created point clouds are then 

rendered in real time and displayed in a VR headset allowing viewing in 6DoF. The point 

cloud framerate is usually 25 or 30 fps, and the points that are moving in each frame contain 

motion vectors to interpolate between frames to allow smooth movement in VR. 

An essential element of PresenZ VR is the Zone of View (ZOV). The ZOV is a volume box, 

inside which the VR user can move freely and have a proper perspective change on the pre-

rendered 3D scene. PresenZ makes a render from the ZOV, gathering all the information 

that is possible to see from within this “zone”. In contrast, a 3DoF VR system uses a 

perspective camera projection centred around a single point of view (or focal point), limiting 

the user’s experience, even if the VR headset has positional tracking. This is the main cause 

of cybersickness, discomfort and poor immersion in 3DoF VR systems [6].  

The PresenZ VR system originally used the BLOSC [8] algorithm to compress the 6DoF 

point cloud data. While BLOSC offers fast decoding, it results in high bitrates (typically higher 

than 500 MB/s), which limits this approach to expensive systems equipped with NVMe SSD 

drives. 



 
 
Description of Presenz VR data fields 

The position of each point in a point cloud is described by its X, Y, Z coordinates in a 

Cartesian space. The X and Y coordinates correspond to a 2D projection on a sensor (such 

as a camera), while the Z coordinate relates to the distance from the camera. Each point 

has multiple data attributes, which include color information for the left and right eye, the 

size and opacity of the point, a normal vector [11], a camera index, and motion vectors to 

describe point motion in time. Typically, most of the points have the same value for both 

eyes, although values may differ such as when there are stereo reflection effects on window 

and other reflective surfaces.  

A VR movie is formed as a sequence of consecutive point cloud sets (termed as frames). 

The number of points in each frame varies depending on how many points will be covered 

(occluded) and uncovered by camera movements. For example, when there are thin objects 

close to the viewer, more objects can be uncovered as the camera is allowed to move 

upwards/downwards/left/right/forward/backwards and capture points behind the close 

object. Most frames contain around 4 to 5 million points. 

Some attributes, such as the left and right eye colour, can be encoded in a lossy manner 

without a significant degradation of the VR user experience and the perceived visual quality. 

On the contrary, some other attributes, such as size and camera index, must remain intact, 

otherwise very noticeable errors will appear when viewing the point cloud (e.g. points being 

in the wrong position or holes appearing in objects). 

Presenz VR Point Cloud Codec Requirements 

To enable a 6DOF VR movie to be played on a high-end gaming PC or laptop equipped with 

a conventional SSD drive requires the compressed VR movie to have a data rate lower than 

the 500 MB/s whilst keeping the decoding processes simple enough to allow 30 frames per 

second to be decoded, and for the video quality to be excellent to provide a truly immersive 

experience. Hence the need for a data compression codec tuned for point clouds. 

Point cloud compression 

A point cloud is a flexible way to represent a set of individual 3D points. Each point has a 

3D position as well as some other attributes such as colour, surface normal, etc [9].  

Due to the wide range of point cloud data-based applications, the Moving Picture Experts 

Group (MPEG) began developing 3D point cloud compression standards in 2017. MPEG’s 

work is divided into two parts [9, 14]: Video-based point cloud compression (V-PCC), which 

is appropriate for point sets with a relatively uniform distribution of points, and Geometry-

based (G-PCC), which is appropriate for more sparse distributions. G-PCC is the most 

relevant to our work, as we also focus on sparser distributions. 

MPEG G-PCC [7, 18] provides several alternative methods for to signal the occupied points 

in the point cloud are occupied including a standard octree representation, and a direct (x, 

y, z) representation, and a combination of octree and a triangular surface representation 

known as triangle soup.  

MPEG G-PCC also defines several methods for attribute encoding, including Region 

Adaptive Hierarchical Transform (RAHT) which is similar to wavelet transforms in the 2D 



 
 
space, and Layer of Detail (LoD) generation where an attribute is predicted from already 

coded points in the current or subsequent layers. 

Another codec that we considered was Google Draco [15], an open-source mesh and point 

cloud compression codec. The techniques for encoding point cloud occupancy are similar 

to G-PCC except that kd-tree structures are used rather than octrees. Draco uses similar 

techniques to G-PCC for coding the attributes. 

In the spring of 2020, when work started on developing a point cloud compression codec to 

meet Presenz VR’s requirements, MPEG G-PCC was still at an early stage of development, 

and so was judged to not have all the tools and techniques necessary to fulfil the 

requirements. One of the key missing capabilities was a temporal frame prediction scheme, 

although it is a planned G-PCC feature [18]. Google Draco also does not include a temporal 

prediction mode.  

Hence the decision was made to develop a proprietary solution, utilizing the in-house 

knowledge gained through the development of hierarchical codecs such as SMPTE ST-2117 

VC-6 [16] and MPEG-5 Part 2 (LCEVC) [17]. 

Similar to G-PCC, our scheme uses either octrees or direct (x, y, z) representations for 

coding the geometry of the occupied points in the point cloud, and various prediction and 

arithmetic encoding methods to encode the point attributes.  

Our scheme organizes the data into independent subsets and the techniques used are 

designed to allow massive parallelization of the coding process. It also supports both intra 

and temporal prediction, allowing the codec to take advantage of point similarities across 

consecutive frames and therefore encode points at much lower bitrates compared to the 

intra mode. Additionally, we wanted our scheme to be flexible, so that it can be easily 

extended to encode different point cloud formats. 

OUR APPROACH 

General structure 

Our approach begins by encoding the position of each 3D point within each point cloud 

frame. This encoding reorders the points, with the new order being preserved throughout 

the encoding and decoding processes. The purpose of the point reordering is to take 

advantage of any structural similarities between adjacent points and thus achieve better 

compression through differential coding and other similar techniques. Each attribute is then 

encoded separately.  

When there is a sequence of frames, the first frame is encoded as above (termed as Intra 

mode). Each subsequent frame may be encoded in Intra mode too, or it may be encoded 

based on its preceding frame, where points can be copied between frames with a correction 

for the colour, providing improved compression and decoding speed. We term the later 

mode as Temporal mode. 



 
 
Compression methods 

Octree representation 

An octree may be used to encode the X, Y, and Z coordinates of each point. Starting with a 

cube (with sides with a length of a power of two that is large enough to enclose every point), 

the points are separated into 8 equally sized sub-cubes (the length of the sub-cube sides 

will be half the length of the sides of the original cube). 8 bits are used to show which of 

these 8 sub-cubes contain points, using a 0 to indicate that no points are in the sub-cube 

and a 1 to show there is at least one point included. The order of the bits, starting from the 

least significant one, is given by the order that the cubes are checked. The first cube checked 

is the one closest to (0,0,0). This splitting is repeated, splitting each non-empty cube to 8 

equally sized cubes, until the side length of the cubes becomes a predetermined power of 

two.  

Each of the cubes in the final layer of the octree is referenced by its top left corner 

coordinates. The 8-bit codes show how the octree was split and are entropy encoded. The 

order of the codes is given in a Breadth-First-Search (BFS) manner for the first seven levels 

of the octree. Finally, for each actual data point, we encode its difference to the top-left 

corner coordinates of the smallest containing cube. 

XYZ coding 

If an octree is not used for encoding the position of each point, then the X, Y, and Z values 

can be encoded separately. The first step is sorting the point coordinates and splitting them 

to high (most-significant) and low (least-significant) bits. The actual number of low bits is 

defined in the header (typically 2 or 4). When ignoring the low bits, any duplicates in the 

Figure 2 - An illustration of an octree and how it splits a 3D cube into sub-cubes [12] 



 
 
combined high bits of X, Y, and Z are counted and removed. The high bits then give the 

positions of the cubes that would be found at a corresponding level of an octree. They may 

then be differentially coded (which is signalled in the bitstream) and finally entropy encoded. 

The low bits are handled in the same manner as in the octree method where they are given 

a fixed number of bits per value, and they are added directly to the bitstream. 

Pre-processing 

After the values of each attribute have been sorted according to the order given by the 

position encoding method, the values can be pre-processed to facilitate later encoding. The 

possible methods used in this step are: (1) differential coding, and (2) grouping the points 

(normally based on the octree) and then subtracting an average from each group of values 

of the attribute. These average values for each group are then differentially coded and 

entropy coded. The attributes that can be lossy encoded may be quantized at some user-

defined or data-adaptive levels. 

Sparsification 

After the pre-processing of the attribute values, it is likely that there will be many zeros. To 

reduce entropy and the number of values that need to be decoded, we introduce a method 

termed as sparsification. The sparsification method groups multiple values together, checks 

if a whole group is zero-valued, and if so then this zero group can be removed from further 

encoding. 

For a fixed size N, each data subgroup of size N, starting from the beginning and moving 

along N values each time, is checked to see if all the values are zero. A bitarray is created, 

containing a 1 for each group that contains any non-zero values, and a 0 for each group that 

contains only zeros. This bitarray is subsequently run-length encoded, where only the first 

symbol, which is either a 0 or 1, and the length of each run are needed. There are only two 

possible values in the bitarray and so the value of each run alternates between these.  

 

Figure 3 An example of sparsification with N = 4 

Figure 3 shows an example with N = 4 and how the bitarray that identifies the groups 

containing all zeros is run length encoded.  



 
 
Entropy coding 

After pre-processing and sparsification, entropy coding methods are used to encode the 

data of each attribute, as well as information about the octree and temporal scheme. The 

entropy coding method used is either Huffman or range encoding. While range encoding 

can result in more efficient compression, in practice we used Huffman more frequently, as it 

offers improved decoding speed. 

Temporal scheme 

Our temporal scheme is applied on consecutive frames in a sequence to efficiently encode 

static objects in the scene, such as buildings and the ground. A point is marked as temporal 

if it exactly matches a point in the previous frame in terms of location and attributes. 

However, by allowing some flexibility in the attributes, especially the colour ones, more 

points can be encoded as temporal. In that case, we need to signal the differences (deltas) 

between the temporal points and their matching points at the previous frame. 

For instance, as objects move throughout the sequence of frames, they may cast shadows 

over the otherwise static points, slightly altering their colour attributes. Other attributes, such 

as the normal, do not change between frames and so no differences need to be encoded. 

So that the decoder knows which points to copy from the previous frame, a bitarray is 

created with a length equal to the number of points in the previous frame, where each bit 

corresponds to a single point and signals whether the point should be copied to the current 

frame when decoding. The points copied from the previous frame only have differences in 

the colour attributes, which are encoded in a similar fashion to the attribute values, where 

they are quantized, sparsified, and entropy encoded. 

Bitstream format 

Our bitstream format contains all the necessary information to decode a point cloud frame, 

and it is comprised of a few main data layers. First, there is the fixed-size header layer, 

containing the number of points within the point cloud frame, information about the colour 

space and attributes encoded, the sizes of each of the following sections of the bitstream, 

and some information showing the pre-processing methods needed to decode the points. 

Following this layer, there are four more sections of the bitstream: (1) the temporal section, 

(2) the attribute headers section, (3) the point position section, and (4) the attribute payload 

section. 

Temporal Section 

The temporal section contains a temporal bitarray that shows which points are encoded in 

temporal mode and which in intra mode. It also contains correction residuals that need to be 

applied to the temporal mode points during decoding, as well as the reference points from 

the previous frame.  

In particular, the temporal section begins with a header, including the number of temporal 

points, the size of the payload, the attributes with non-zero temporal differences, and 

information about the run-length encoded bitarray mentioned above (length of the 

compressed array in bytes, and number of actual array values). 



 
 
After the header, the temporal header contains a payload part: For each of the attributes 

that need a correction, the metadata and payload sizes are stored. The temporal header 

concludes with a metadata and payload part: the bitstream includes the entropy coding 

metadata for the temporal bitarray and its payload, followed by the metadata and payload 

for each of the attributes with non-zero differences. 

Attribute headers section 

This section contains information about the encoding method used for each attribute. Each 

attribute has a separate header which contains the pre-processing method that is used, the 

quantisation parameter (when necessary), the data average, the data transform type, and 

entropy coding metadata. Sparsification information follows, including the sparsification 

group size and the entropy encoding metadata for the sparsification bitarray. 

Point position section 

This part contains the data for decoding the position of each point. This data may be 

structured as either an octree or as separately encoded point coordinates (XYZ coding). 

After decoding, both methods provide the non-empty cubes with a given side length (which 

is always a power of two). 

In the case of the octree, it first optionally contains the number of points within each cube at 

a given level of the octree that can be used for separating the attribute values to groups with 

different averages. Then it contains the number of octree codes that are included in the full 

octree, and the entropy encoding metadata and payload so that they can be decoded. Next 

in the bitstream is how many points are in each of the final level octree cubes.  

The optional part of the octree section can be calculated while decoding the octree but is 

included to increase decoding speed, while it also allows the size of the groups to not exactly 

match the number of points in a level of the octree. 

In the case of the separately encoded point coordinates (XYZ coding), first the bitarray 

contains the method used to encode the coordinates, such as differential coding, how the 

values were split into high and low bits, and how duplicate values of the high bits were 

handled. It then contains an array of sizes for each coordinate giving the metadata and 

payload sizes, finally followed by the metadata and payloads. 

Finally, for both methods the bitarray contains for each point a fixed length code to encode 

where in each final level cube the points are. 

Attributes payloads section 

This part contains the entropy encoded payloads for each attribute. 

EXPERIMENTAL RESULTS 

Implementation details 

We implemented the encoder and decoder in C++. To improve the encoding and decoding 

performance, we utilized multi-threading and IntelTM Single-Instruction-Multiple-Data 

(SIMD) intrinsics. We also designed and implemented a codec API, which was integrated in 



 
 
the PresenZ VR workflow and was used in our subsequent tests on content provided by 

PresenZ. 

Compression efficiency 

The PresenZ VR system originally used the BLOSC [8] algorithm to compress the 6DoF 

point cloud data. BLOSC bitrates on the testing content averaged 457 MB/s (Megabytes per 

second) at 25 fps but could peak much higher for complex images.  

When compressed using our encoder, the average bitrate was reduced to 93 MB/s, and 

peak rate to only 210 MB/s thus reducing the bitrate to well within the capabilities of 

conventional Solid State Drives (SSD).  

The gain data compression compared to BLOSC depends on the similarity of the points 

between frames. For example, on one sequence with minor changes between frames the 

original BLOSC compressed size was 242MB/s and the new compressed size only 0.7MB/s. 

For a sequence with a lot of movement of points between each frame the original size was 

130MB/s and the new compressed size 42MB/s. Our encoder was operated in a variable 

bitrate, constant quality mode. Detailed results for several VR sequences taken from the 

“Contstruct” VR movie [13] are shown on Table 1. 

Computational efficiency 

Our point cloud decoder needed to operate at 30 fps, to allow smooth viewing of the 

rendered VR movie. The following results were obtained on a laptop with an Intel i7-10875H 

CPU with 32 GB 3200MHz RAM.  Our experiments show that we can achieve around 4-5 

fps for encoding (using a non-optimized encoder) and 40+ fps when decoding. For 

rendering, we used a NVIDIA GeForce RTX 2080 Super 8 GB graphics card. For our 

experiments we used an Oculus Quest 2 VR headset. 

The decoding speed is highly dependent on the encoded bitrate, which is dependent on the 

scene complexity, as illustrated in Table 1. 

  



 
 

Sequence 
Number  

of frames 
BLOSC MB/s Compressed MB/s 

Max achievable 

decoding fps 

902 1400 747 106 106 

903 830 429 70 129 

904 642 794 210 54 

905 1038 409 109 104 

906 580 163 20 160 

907 853 523 126 96 

908 1005 456 149 84 

909 1105 630 70 129 

910 1312 180 49 160 

1000 480 159 47 156 

Credits 258 5.4 4 135 

Total 9503 457 93 118 

 

CONCLUSIONS 

The primary aim of developing a 6 DOF VR point cloud compression codec to enable the 

playback of 6 DOF VR movies generated by Presenz VR on high end gaming PCs was met, 

and the Construct VR volumetric movie was made publicly available [13]. 

Using the knowledge gained from developing the VC-6 (SMPTE ST 2117) and LCEVC 

(MPEG-5 Part 2) codecs and adopting an innovative approach to exploiting temporal 

redundancy between point-cloud frames we were able to compress the 6 DOF VR movie to 

average data rates under 100 MB/s whilst maintaining the quality required to provide a 

compelling VR experience, and doing so in such a way that the decoding and rendering can 

be performed by typical high end gaming laptop and desktop machines. 

The VR compression codec we have developed provides a flexible framework for further 

innovation and is capable of being tuned to address other VR use cases. Future work 

includes enhancing and automating the encoding mode decisions to provide even greater 

compression performance, and further optimization of the encoder and decoder 

implementations. 

In addition to the distribution of 6 DOF VR movies, other potential use cases include virtual 

production, medical imaging, and of course the metaverse. 
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