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ABSTRACT 

 In recent years, live video-game-centric streaming platforms have 
experienced dramatic growth, driven by the explosion of the esports market. 
Besides, live-event rightsholders and broadcasters are successfully 
‘gamifying’ their video offerings. Given the rise of video game live streaming, 
we address in this paper the questions of how to optimize and adapt the 
encoding strategies for efficient game content coding. We first characterize 
game content, focusing on how its signal characteristics differ from ‘natural’ 
content. We then share insights on selected encoding strategies targeting 
improvements in both compression efficiency and density/encoder run-time 
for signals with such characteristics. Additionally, we examine the relevance 
of Screen Content Coding (SCC) tools, as adopted in HEVC SCC and VVC 
standards, in a video game coding context. Finally, we conclude the paper by 
highlighting the benefits of using game-content aware technology with better 
compression efficiency under real-time constraints. 

INTRODUCTION 

The proliferation of IPTV and OTT media delivery technologies have helped establish video 
game live streaming as a major market segment. In recent years, video-game-centric 
streaming platforms such as Twitch, YouTube, or Facebook Gaming, have experienced a 
dramatic growth (101%, 65%, and 238% respectively in 2020). Overall, the related global 
esports market – the competitive and professional element of the gaming world – generated 
more than $1 billion in revenues in 2020 and is forecast to hit $1.6 billion by 2023 [1]. In 
addition, we should expect to see live-event rightsholders and broadcasters ‘gamify’ their 
video offerings with a greater degree of social interaction and mixed-media experiences. For 
example, the NBA has successfully trialed replacing live action with video game simulations 
[2]. Likewise, during lockdown SRO Motorsports successfully switched real races to esports, 
even holding them during their originally scheduled date and time. The unique Fanatec 
Esports GT Pro Series, initiated in 2021, where real racing drivers compete in a virtual 
environment for points towards their real-world championship will survive past the lockdown 
period and return for 2022 streamed live across YouTube, Twitch and Facebook [3]. Given 
the rise of video game live streaming, questions on how to optimize and adapt the encoding 
strategies to game content open an important field of research.  

In this paper, we discuss some key elements to efficiently encode video game content in 
real-time and how this can lead to ‘game-content aware’ encoding solutions. We start by 
characterizing game content, focusing on how its signal characteristics differ from ‘natural’ 
content and may require specific encoder optimizations. We then share insights about some 
specific encoding strategies (e.g., rate control, adaptive quantization, in-loop filtering, motion 



        

estimation, etc.), targeting improvements in both compression efficiency and 
density/encoder run-time for signals with such characteristics. Additionally, and since video 
compression standards, such as HEVC or VVC, include coding tools specifically designed 
to compress screen content, we examine the relevance of those tools in a video game 
coding context. Finally, we show the benefits of using game-content aware technology with 
better compression efficiency under real-time constraints.  

CHARACTERIZATION OF VIDEO GAME CONTENT 

Video games generally refer to interactive games that run on electronic media platforms. 
Popular mainstream games may take the form of computer games, console games, mobile 
games, handheld games, VR games, cloud games, among others. 

Game content signal characteristics significantly differ from ‘natural’ video content, which 
are commonly compressed and delivered over various networks (i.e. Live broadcast, 
broadband/IPTV/OTT). 

Gaming videos are computer generated (i.e. using a rendering engine) while ‘natural’ videos 
are captured from optical/electronical cameras/sensors. As such, video game content is 
assumed to be mostly characterized by presenting plain and smooth color gradient areas, 
sharp and well-defined objects (e.g. with text and graphics), no spatial, temporal, or cross-
component noises, no focus or motion blur, and low average motion complexity over time, 
but with possible high complexity motion bursts and with typically non-translational motions 
(e.g. first-person shooters games). 

Nevertheless, gaming videos streamed over the internet cover a wide range of games, 
varying largely in their encoding complexity. Games fall into various genres, including role-
playing games, adventure games, action games, first-person shooters, real-time strategy 
games, fighting games, board games, massive multiplayer online role-playing games, and 
others. For this work we built a representative test set borrowed from the ‘GamingVideoSET’ 
database [4] that contains 24 gaming contents recorded from 12 different games as shown 
in Figure 1. Each video is 30s length in 1920x1080 / 30fps / 8-bit, 4:2:0, YUV format. 

 

Figure 1 - Screenshots of the gaming videos test set 



        

Complementary to the gaming video test set, we defined a second test set representative of 
‘natural’ videos, to establish a comparison point. It consists of 5 full-HD sequences borrowed 
from the JVET - Common Test Conditions (CTCs), namely Class B of the JVET CTCs, and 
shown Figure 2. 

 

Figure 2 – Screenshots of the natural videos test set 

For the two test sets we plotted and compared their respective coding complexities. The 
ITU-T Rec. P.910 commonly defines Spatial Information (SI) and Temporal Information (TI) 
values to approximate a measure of complexity. In this work, we introduce and define an 
analogous but slightly different content complexity measurement, using four metrics, that 
can be easily estimated by a Look-ahead of an encoder, and better reflect the coding 
complexity of the input content. Each of the four metrics are computed on a 16x16 block-
basis over each individual sequence frame: 

Spatial or Intra coding complexity 

The spatial or intra coding complexity, 𝐶𝑖𝑛𝑡𝑟𝑎, of a sequence is defined as the average over 
the sequence of the 16x16-block transformed residual energy after intra prediction from 
source sample neighboring. H264 intra prediction modes are used for sample prediction. 
The Hadamard transform is used as transform type. 

Temporal or Inter coding complexity 

The temporal or inter coding complexity, 𝐶𝑖𝑛𝑡𝑒𝑟, of a sequence is defined as the average 
over the sequence of the 16x16-block transformed residual energy after motion estimation 
(ME) and compensation (MC). A hierarchical motion estimation algorithm is used as ME. 

Sequence coding complexity 

The sequence coding complexity, 𝐶𝑠𝑒𝑞 , is defined as the average over the sequence of the 

minimum between Intra and Inter transformed residual energies for each block. This metric 
gives an estimate of how complex a given signal is to predict and compress, as well as how 
much residual signal information needs to be coded (i.e. residual signal coding cost) 

Motion coding complexity 

The motion coding complexity, 𝐶𝑚𝑜𝑡𝑖𝑜𝑛, is defined as the average over the sequence of 
16x16-block motion vector difference with a motion predictor. The motion vector predictor 
for each block is defined as the median value of the 3 neighboring (left, top-left and top) MVs 
if available. This last metric gives an order of the variability of the motion, as well as how 
much residual motion information needs to be coded (i.e. motion coding cost)  

The complexity metrics were computed for each sequence and test set, with resulting values 
depicted Figure 3. 



        

 

Figure 3 – Coding complexities for the game (red) and natural (blue) test sets 

From the analysis of the complexity results, we can first observe on the left plot, that the 
temporal or inter coding complexity is clearly lower for the gaming video test set. There is 
one exception for the ‘Counter Strike: Global Offsensive’ (CSGO) which present strong and 
complex motion (i.e. non-translational) as a first-person shooting game; motion which is not 
well captured by a block-based translational motion estimation/compensation model. 
Surprisingly, the spatial or intra coding complexity for the game test set is in average on par 
with the complexity of the natural set. A closer analysis of the natural test content, i.e. 
‘MarketPlace’, ‘BasketballDrive’ and ‘RitualDance’, shows that those sequences present a 
lot of focus and motion blurs, smoothing a large proportion of the highly texture areas. It may 
explain their relatively low intra-complexity scores. The right plot shows the overall sequence 
coding complexity score against the motion coding complexity. With exception of the ‘CSGO’ 
sequence, the video game test set is predictable with significantly more signal information 
redundancy than the natural content set. In average, the motion information is low (i.e. 
homogeneous across the frame). The H1Z1 sequence shows a relatively higher motion cost 
(i.e. more motion variability across the frame) while being well compensated out of the 
prediction. 

RELEVANT ENCODING OPTIMIZATIONS FOR VIDEO GAME CODING 

From the previous assumptions and learnings on game content signal characteristics, we 
highlight in this section some relevant tracks for encoding optimizations targeting this 
specific type of content. There is no will to be exhaustive in the possible strategies and levers 
available from an encoder perspective for better compressing video games. As such, we 
discuss 4 selected strategies that are beneficial for game coding in terms of compression 
efficiency or coding complexity reduction, with application into MediaKind’s HEVC SW 
optimized codec: UnCL-HEVC.  

All the experimental results reported in this section rely on the same following test conditions: 
use of full UnCL-HEVC tool set, hierarchical B-frames, 1s Intra period with open-GOP, 
« Constant QP » mode comparison using 6 base QP points (17, 22, 27, 32, 37, 42), and 
compression efficiency measured in terms of bitrate saving for the same quality score (e.g. 
SSIM, MS-SSIM or PSNR) using the Bjöntegaard metric [5]. 



        

Rate control and adaptive quantization optimization 

Bit budget repartition and the subsequent quantization control within a picture or a Group-
Of-Pictures (GOP) is a fundamental optimization point for efficient video compression [6]. 
We extensively discussed in [6] the various ways for optimally trading bits between samples 
to code (i.e. block or coding unit (CU)) and how to adapt the quantization parameter from 
frame down to a block/CU within a GOP. Notably, we introduced a best-in-class Adaptive 
Quantization (AQP) algorithm: RDSTQ for Rate-Distortion-based Spatio-Temporal 
Quantization. The RDSTQ algorithm models the temporal distortion propagation from CU to 
CU within a GOP to estimate optimal QPs per CU, that minimize the total Distortion (or 
equivalently maximize the Video Quality (VQ)) for a given Rate constraint. It optionally 
includes a spatial psycho-visual weighting function accounting for Human Visual System 
(HVS) quality perception, and a “strength” parameter controlling the importance of the 
temporal distortion propagation and the dynamic of the output QPs. Interested readers can 
refer to [7] for a thorough description of the underlying theory, modelling and optimization 
problem resolution, as well as extensive data results and performance analysis. We’ve seen 
in the previous section that video game content tends to be characterized by: 

1. plain and smooth color/luminance gradient areas mixed with sharp and well-defined 
objects (e.g. with text and graphics), 

2. relatively well predicted motions, with several static or with low motion areas. 

For addressing the observation point 1, it is considered to adapt the psycho-visual weighting 
function to best preserve main object edges/boundaries into RDSTQ model. 

Briefly, the rate (R) – distortion (D) optimization problem solved by the RDSTQ is: 
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frame 𝑡 of the GOP and 𝜓𝑖𝑡
 the psycho-visual weighting function applied for that block. 

The default psycho-visual weighting used in RDSTQ model and published in [7], is based 
on local pixel variances of a block 𝑖𝑡. It models spatial masking in case of highly textured 
areas, and has a great correlation with SSIM or MS-SSIM quality metric. It is defined by the 
equation (2). 
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As a generic improvement, and specifically relevant in the context of video game coding, it 
is proposed to adapt the default psycho-visual weighting based on local pixel variances and 
the modulus of the local gradient (G) (e.g. out of an edge detector). Such, the new 
psychovisual weighting, defined equation (3), models spatial masking in case of highly 
textured areas while preserving edges/boundaries of interest. 
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The benefits of the use of the new spatial psychovisual weighting function are evaluated 
(without loss of generality) for a spatial-only version of the RDSTQ model, i.e. RDSQ, 
dropping the temporal distortion propagation into the optimization problem (1). 

Experimental results are given Table 1 for the two test sets based on ‘natural’ and ‘game’ 
content. It shows that the use of the spatial psycho-visual weighting function (3) with RDSQ 
in the context of game coding provides in average -2.72% bitrate-saving for the same MS-
SSIM score against the default psycho-visual weighting. Bitrate saving can go up to -5.21% 
for some sequence. Bitrate savings for the ‘natural’ test set are more modest but still 
significant. 

Table 1: bitrate-saving (%) of RDSQ model with (3) vs (2) 

BD-Rate (%) 
SSIM MS-SSIM 

average best worst average best worst 

All -1.27% -5.21% 0.55% -2.24% -7.11% -0.31% 

Natural -0.36% -0.76% 0.06% -1.08% -2.07% -0.31% 

Game -1.65% -5.21% 0.55% -2.72% -7.11% -0.67% 

 

We have highlighted one possible optimization to address characteristic 1 of video game 
content. If we now focused on the observation point 2, still in the context of AQP algorithm, 
it is considered to increase the strength (i.e. importance) of the temporal distortion 
propagation into the RDSTQ model. This way, the model will be pushing more bits to 
reference frames/areas and leveraging on the beneficial copy/paste mechanism provided 
by motion compensation. To validate such assumption, we’ve made varying the strength 
parameter of the RDSTQ model for the two test sets, ‘game’ vs ‘natural’, and plot the relative 
bitrate saving Figure 4. The results tend to show an “optimal” average strength value of 2.5 
for game content vs 2.0 for the natural content confirming the initial assumption. In practice, 
a more sophisticated version of the RDSTQ model is implemented in MediaKind’s UnCL-
HEVC codec which includes an auto-strength estimation model based on input content 
characteristics, e.g. expressed as a function of the average spatial psychovisual weighting 
(𝜓) and motion coding complexity (𝐶𝑚𝑜𝑡𝑖𝑜𝑛) over the GOP. 

 

Figure 4 - Relative bitrate saving for various RDSTQ strength values vs a strength of 1.0 



        

Adaptive and smoother in-loop filtering 

Adaptive deblocking filter 

H264/AVC, HEVC or VVC standards allow the use of in-loop adaptive deblocking filters to 
mitigate artifacts generated by discontinuities between transform edges after quantization. 
The filters use several local conditions and threshold parameters to determine if each edge 
is likely to be a natural edge, ideally to be left unfiltered, or the consequence of a transform 
discontinuity that should be filtered to mitigate blocking artifacts out of the quantization and 
reconstruction process. In addition to determine whether the deblocking filtering should be 
applied to the block boundary or not, the thresholding parameters control the use of normal 
or strong filter. Typically, in HEVC [8], two thresholding parameters 𝛽 and 𝑡𝐶 are specified 
(i.e. table known by the decoder) and dependent on the average QP value of two 
neighboring blocks with common block edge. 

The deblocking parameters 𝑡𝐶  and 𝛽 provide adaptivity according to the QP and prediction 
type. However, different sequences or parts of the same sequence may have different 
characteristics. Conveniently, deblocking adjustment parameters can be sent in the slice 
header or picture parameters set (PPS) to control the amount of deblocking filtering applied. 
The corresponding parameters in HEVC are 𝑡𝑐_𝑜𝑓𝑓𝑠𝑒𝑡_𝑑𝑖𝑣2 and 𝑏𝑒𝑡𝑎_𝑜𝑓𝑓𝑠𝑒𝑡_𝑑𝑖𝑣2. These 
parameters specify the offsets (divided by two) that are added to the QP value before 
determining the 𝛽 and 𝑡𝐶 values. 

We can then easily understand that deblocking parameter adjustment per frame is one key 
feature for encoding efficiency optimization, especially in the context of video game coding. 
Indeed, game content tends to have plain and smooth color/luminance gradient areas, very 
prone to blocking artifacts, where in-loop filtering is very important. It is also mixed with sharp 
and well-defined objects which should not be subject to strong filtering but tend to be easily 
identified by standard deblocking conditions. 

For that purpose, we designed a frame-based deblocking parameter adjustment algorithm, 
able to determine offset values as specified by the standard. Coarsely, a negative offset 
reduces the filter impact, and a positive offset increases the filter effect. 

The algorithm design considers the following aspects: 

▪ the type of content where using negative offsets will be most effective, i.e. content that is 
quite easy to encode and is temporally consistent. Content with a lot of motion, and that 
is inconsistent, is likely to show blocking if we reduce the deblocking filter strength, 

▪ Intra (I) and reference pictures are the most important frames for adapting the filter 
strength, as they form the basis of prediction for following frames, 

▪ scene transitions should be treated with care. Blocking artefacts can be more visible 
following transitions. It is then sensible not decreasing the filter offsets too much during 
transitions. 

Overall, the estimated frame offset values are defined as a function of the scene transition 
info, frame type, average motion compensated error and motion entropy for the frame. 
Performance of the proposed algorithm is summarized Table 2 for both test sets. Significant 
coding efficiency improvements can be observed for the two test sets, but average bitrate 
saving approximately doubles for video game content confirming the importance of such 
technique in the context of game encoding. 



        

Table 2: bitrate saving (%) of proposed adjustment algorithm vs default deblocking filter 

BD-Rate (%) 
SSIM MS-SSIM PSNR 

average best worst average best worst average best worst 

All -2.90% -6.67% 0.16% -2.45% -6.02% 0.02% -0.55% -3.39% 0.32% 

Natural -1.78% -4.59% 0.16% -1.59% -4.31% 0.02% -0.31% -0.92% 0.08% 

Game -3.36% -6.67% -0.38% -2.81% -6.02% -0.42% -0.65% -3.39% 0.32% 

 

Intra reference samples filtering 

In HEVC or VVC, reference samples from spatial neighboring used for Intra prediction are 
conditionally filtered [9][10] to mitigate quantization error propagation, improving prediction 
and compression efficiency. In the context of HEVC standard version 1, only the use or not 
of strong reference sample smoothing (i.e. bi-linear interpolation filter) for 32x32 transform 
block size, can be controlled by the encoder and signaled at the sequence level (i.e. using 
SPS). It is designed to further reduce contouring artifacts caused by edges in the reference 
sample arrays, which can be more visible on 32x32 block size. The effect of disabling by 
default this strong intra reference sample smoothing is given Table 3. We can observe that 
on the two considered test set it seems beneficial disabling strong intra smoothing, 
particularly in the context of video game coding, with bitrate savings of up to -1.55%. 

Table 3: bitrate saving (%) of disabling strong intra smoothing 

BD-Rate (%) 
SSIM MS-SSIM PSNR 

average best worst average best worst average best worst 

All -0.27% -0.94% 0.14% -0.34% -1.55% 0.10% -0.21% -0.93% 0.19% 

Natural -0.19% -0.49% 0.04% -0.26% -0.35% -0.11% -0.22% -0.32% -0.07% 

Game -0.31% -0.94% 0.14% -0.37% -1.55% 0.10% -0.20% -0.93% 0.19% 

 

Use of 10-bit encoding accuracy with 8-bit signal input 

10-bit internal bit-depth precision is optionally allowed for most of video standards/codecs 
(e.g. H264 High10, HEVC Main10, VVC Main, etc.) with the use of 4:2:0 chroma component 
sub-sampling format (as a subsampling format widely used for video streaming).  It means 
that prediction, residual coding, and in-loop reconstruction are processed in 10-bit instead 
of 8-bit by default. Today, it is widely understood that even for 8-bit signal input there is a 
benefit in compression efficiency from processing signal with 10-bit accuracy. There are less 
truncation errors, especially in the motion compensation stage, increasing the efficiency of 
compression tools. It also helps to better mitigate quantization errors out of the compression 
process (in relation to noise shaping). For video game content, it visually improves the 
coding of plain areas with smooth colour or luminance gradient, reducing banding and/or 
blocking artifacts. Compression efficiency results for 10-bit encoding accuracy versus 8-bit 
is given Table 4. In the context of game coding, using 10-bit encode accuracy provides an 
average of -6.17% bitrate-saving for the same SSIM quality, and up to -15.43% and would 
be the de-facto recommended encoding format.  

 



        

Table 4: bitrate saving (%) of using 10-bit encoding accuracy vs 8-bit 

BD-Rate (%) 
SSIM MS-SSIM PSNR 

average best worst average best worst average best worst 

All -5.11% -15.43% -0.43% -1.91% -6.51% 0.56% -3.01% -12.07% 0.57% 

Natural -2.56% -4.08% -0.91% -0.40% -1.19% 0.31% -1.31% -2.51% 0.35% 

Game -6.17% -15.43% -0.43% -2.53% -6.51% 0.56% -3.72% -12.07% 0.57% 

Adaptive motion vector resolution estimation and coding 

Most video coding standards, including HEVC and VVC, make use of sub-pixel Motion 
Estimation (ME) with Motion Vectors (MV) at fractional precisions to achieve high 
compression ratios. Unfortunately, sub-pixel ME comes at very high computational costs 
due to the interpolation step and additional motion searches. There has been extensive 
research on reducing the complexity of subpel ME, with relevant works presented in [11], 
[12], [13], [14] and [15]. Most of the techniques formulate a subpel error surface with a 
mathematical model to directly determine the best sub-pixel MV cost and thus potentially 
reducing both search and interpolation complexities. Some other techniques such as 
[11][15] rely on global and local features, or coding statistics, of the content for conditionally 
skipping the subpel ME process on a block-basis. Those approaches that may be 
challenged in addressing a large variety of camera-captured video content, but could be 
particularly efficient in the context of computer-generated content such as video games. 

In addition to ME computational complexity saving, HEVC – Screen Content Coding (SCC) 
extension or VVC can allow adaptive MV resolution coding and signaling at the slice and 
CU levels, respectively. It can provide further MV bit cost saving and compression efficiency 
as discussed in the next section.  

SCREEN CONTENT RELATED TOOLS FOR VIDEO GAME CODING 

HEVC through its SCC extension, and VVC have adopted coding tools to specifically 
compress Screen Content [16][17][18]. By screen content we refer to video containing a 
significant portion of rendered (moving or static) graphics, text, or animation rather than (or 
in addition to) camera-captured video scenes. Example applications include wireless 
displays, remote computer desktop access, and real-time screen sharing for 
videoconferencing. The motivation of this section is to assess the relevance and 
compression performances of the SCC-related tools in the context of video game coding, 
that has not been investigated in the literature. We first give a brief description of the main 
SCC tools available in both HEVC-SCC and VVC, then evaluate their respective coding 
efficiency based on their implementations into reference SW models. Given we focused on 
coding tools relevant for YUV 4:2:0 format only, the Adaptive Color Transform (ACT) tool, 
specifically designed for RGB 4:4:4 source coding is not covered here. 

Coding tool overview 

Intra Block Copy (IBC) 

IBC is a block-based prediction technology whose mechanism is similar to inter-picture 
motion compensation. The essential difference lies in the fact that its reference samples are 
derived from inside the (reconstructed part of the) current picture. IBC was originally 
proposed during the standardization of H.264/AVC. It was later formally included in HEVC 



        

SCC and then VVC (as well as in other recent standards such as AV1, EVC and AVS2). The 
IBC mode design in the HEVC SCC extension is implemented almost in the same way as 
the HEVC inter-picture motion compensation, using the same syntax structure and nearly 
the same decoding process. The current (partially) decoded picture before the in-loop 
filtering process (including deblocking and SAO) is also regarded as a reference picture, 
when the IBC mode is enabled for coding of the current picture. In this way, block-based 
motion compensation and block-based intra sample copy are unified. In HEVC SCC the 
reference sample region allowed for IBC includes every previously reconstructed Coding 
Tree Units (CTU) in raster-scan, with exception of the top-right regions of CTUs relatively to 
current CTU for parallel processing consideration (i.e. WPP). VVC has few differences in its 
IBC mode design. First, the reference range or region is constrained to a local area (i.e. 
samples from the left CTU and current CTU only) to mitigate HW memory bandwidth and 
implementation timing issues. As a second difference, IBC design is handling the new Dual 
Intra Tree Structure, where Luma and Chroma components are coded separately with a 
different tree structure. For such case, IBC mode is only allowed for Luma component. IBC 
is no longer considered as part of inter mode but an independent coding mode, having its 
own vector coding engine as compared with the motion vector coding schemes in VVC inter 
mode. 

Palette Mode (PLT) 

The motivation of palette mode coding for screen content comes from the observation that 
in local areas, computer generated content typically use a small number of colors to render 
the content. Thus, coding these small color sets directly can be more efficient than going 
through regular coding operations. The colors to represent a coding block are therefore 
referred to as color palette. Each sample in the block is converted into an index of one entry 
in the palette. A typical PLT mode consists of representing the color palette and coding the 
index map. A PLT coded block does not have any residues. A color palette can be either 
joint palette or separate palette. In the former case, a triplet—containing 1 luma value and 
two chroma values is used; for the later, the palette for luma is a single value and the one 
for two chroma components is a duplet. In HEVC SCC, the entries of palette for the current 
block (up to 64) are joint triplets and come from two sources: reusing the palette predictor 
(up to 128) and decoding from the bitstream. The palette mode in VVC is largely inherited 
from HEVC SCC with a few simplifications. 

Transform Skip Mode (TSM) 

Compared to the difference of the residue signal in camera captured contents, screen 
content residue signal tends to be sparse and of low magnitude. This characteristic may 
avoid the use of transforms for further decorrelating/compacting the residual signal. 
Therefore, for screen content, the option of skipping transform coding may provide good 
coding performance improvement as compared to always using transformed coefficient 
coding. In HEVC version 1, TSM is enabled only for 4x4 blocks. In HEVC SCC extension, 
the allowed TSM sizes were extended up to 32x32, (the maximum possible transform size). 
Besides, while the transform is skipped, the coding method of residue signals remains the 
same as the method designed for transform coefficients. In VVC, TSM is allowed and 
signaled for coding block sizes up to 32x32. The residue coding engine is modified to better 
fit the spatial residue distribution, in comparison to regular transform coefficient distribution, 
resulting in improved compression efficiency. 

 



        

Block-based Differential Pulse-Code Modulation (BDPCM) 

Intra prediction is by design usually less efficient in predicting sample more distant from the 
reference samples (i.e. top and left boundaries). Consequently, the residues of an intra 
predicted block may still possess directional patterns. To compensate for such inefficiency, 
further prediction is applied in VVC among the residue samples by using the BDPCM mode. 
With BDPCM mode, a flag is used for each block to choose the intra sample prediction and 
residue prediction from either the horizontal or vertical directions. Intra predicted residue 
samples are first quantized, with each quantized residue sample being further differentially 
predicted/coded from its neighbor along the horizontal or vertical direction. In BDPCM mode 
transform skipping is implicitly applied, and the same residue coding engine as used by TSM 
is applied. Finally, BDPCM can be turned on for luma and chroma components separately. 

Adaptive Motion Vector Resolution (AMVR) 

For camera-captured video, the movement of a real-world object is not necessarily exactly 
aligned to the sample positions in the camera’s sensor. Motion compensation is therefore 
not limited to using integer sample positions (fractional motion compensation is used to 
improve compression efficiency). Computer-generated screen content video is however 
often generated with the knowledge of the sample positions, resulting in motion that is 
discrete or precisely aligned with sample positions in the picture. For this type of video, 
integer motion vectors may be sufficient to represent the motion. Bitrate savings can be 
achieved by not signaling the fractional portion of the motion vectors. 

In HEVC-SCC, AMVR defines a slice-level flag to indicate that the current slice uses integer 
(full-pel) motion vectors for luma samples. If the flag is true, then the motion vector 
predictions, motion vector differences, and resulting motion vectors assume only integer 
values are allowed, savings the bits associated to the representation of the fractional values. 
In VVC, a CU-level AMVR scheme is introduced with finer-granularity in the MV resolution 
selection. In the nominal case, for each CU/block the MV can be coded and signaled in 
quarter-luma-sample, half-luma-sample, integer-luma-sample or four-luma-samples. In 
VVC, the AMVR scheme initially introduced for screen content has been generalized to 
camera-captured thanks to its local adaptivity. 

It is important to note that computer-generated content such as video game, discrete or 
pixel-alignment motion precision will be very dependent of the rendering engine used (e.g. 
2D vs 3D), and the subsequent techniques such as rasterization, fragment processing and 
shader operations, etc. as requested and performed by the GPU. Hence, as for camera-
captured content, local adaptivity might be key for motion precision determination of game 
content. 

Experimental results – compression efficiency 

We evaluated coding performance of the previous SCC-related tools as implemented in 
HEVC-SCC and VVC reference models, using HM-16.21+SCM-8.8 [19] and VTM-16.0 [20], 
respectively. The following test conditions were used: All Intra (AI) and Random Access (RA) 
base configurations, constant QP mode comparison with 5 QP points (22, 27, 32, 37, 42), 
~1s length encode (matching intra/key frame period). 

For both HEVC and VVC evaluations, the references or anchors correspond to HM-
16.21+SCM-8.8 and VTM-16.0 with all the SCC-specific tools turned on. Then, the coding 
efficiency impacts for all SCC tools off and each individual tool off against the anchors, 



        

across the two test configurations and codecs, are summarized Table 5, Table 6 and Table 
7. Data results show how much loss in compression efficiency we can get by disabling a 
given tool or tool set. Hence, a positive number reported in those tables stands for bitrate 
saving provided by the considered tool or tool set. 

The analysis of the results Table 5 shows that SCC tools in the context of HEVC can provide 
significant improvements in coding efficiency of game content, with an average -6.5% (AI) 
and -3.5% (RA) bitrate savings for the same MS-SSIM scores and can go up to -14.6% (AI) 
and -9.6% (RA). As expected, coding efficiency improvements for natural content are more 
modest, in average -1.4% in AI and -0.7% in RA. In the context of VVC, SCC tools benefits 
for game coding are on average -3.7% (AI) and -1.76 (RA) BD-rate gain based on MS-SSIM, 
and up to -7.9% (AI) and 4.40% (RA). Note that in the case of VVC “all SCC-specific tools 
OFF” test configuration, the contribution of the AMVR is not included, i.e. it remained ON by 
default, as it is classified as a generic tool in the RA base configuration. However, its 
individual contribution for VVC is reported later on Table 7. From Table 6 and Table 7 we 
can conclude that IBC is the most efficient tool for coding video game whatever the codec 
HEVC-SCC or VVC, with average bitrate saving ranging from -3.5% to -4.5% in AI and from 
-1.5% and -2.4% in RA. Benefits from other tools such as PLT, TSM or BDPCM, without 
being negligible, are more modest. Regarding AMVR, the slice-based adaptive algorithm as 
implemented in HM-16.21+SCM-8.8 is apparently inefficient. In VVC, the finer AMVR 
design, based on CU-level adaptation and finer decision granularity, and as implemented in 
the VTM-16.0, provides -1.8% average bitrate saving whatever the content type, and up to 
-4.5% for game content. 

Table 5: All SCC-specific tools OFF vs ON (anchor) 

Codec / Config 
HEVC SCC VVC 

AI RA AI RA 

BD-Rate (%) Natural Game Natural Game Natural Game Natural Game 

MS-SSIM 

average 1.39% 6.46% 0.71% 3.46% 0.88% 3.69% 0.36% 1.71% 

min -0.09% 0.77% -0.82% -0.38% -0.24% 0.11% -0.45% -0.49% 

max 3.14% 14.64% 2.78% 9.60% 2.48% 7.93% 1.92% 4.40% 

PSNR 

average 0.95% 7.19% 0.38% 3.74% 0.72% 3.54% 0.27% 1.45% 

min -0.20% 1.01% -0.37% 0.64% -0.16% 0.46% -0.39% 0.07% 

max 2.18% 15.34% 1.17% 9.06% 1.88% 6.96% 1.51% 3.86% 

 

Table 6: Individual HEVC SCC tool OFF vs all tools ON (anchor) 

Configuration AI RA 

Avg BD-Rate (%) IBC PLT TSM IBC PLT TSM AMVR 

Game 
MS-SSIM 4.64% 0.68% 0.17% 2.39% 0.51% 0.40% 0.00% 

PSNR 3.44% 2.27% 0.28% 1.65% 1.11% 0.59% 0.00% 

Natural 
MS-SSIM 1.74% -0.03% -0.10% 1.09% -0.01% -0.10% 0.00% 

PSNR 1.33% -0.01% -0.03% 0.68% -0.05% -0.01% 0.00% 

 

 



        

Table 7: Individual VVC SCC tool OFF vs all tools ON (anchor) 

Configuration AI RA 

Avg BD-Rate (%) IBC PLT TSM BDPCM IBC PLT TSM BDPCM AMVR 

Game 
MS-SSIM 3.44% 0.09% 0.68% 0.14% 1.49% 0.11% 0.06% 0.07% 1.75% 

PSNR 2.72% 0.29% 1.56% 0.22% 1.04% 0.11% 1.55% 0.11% 1.41% 

Natural 
MS-SSIM 0.98% -0.07% -0.08% -0.08% 0.42% -0.11% -0.30% -0.12% 1.76% 

PSNR 0.80% -0.05% 0.04% -0.04% 0.30% -0.06% 0.01% -0.02% 1.43% 

 

TOWARDS ‘GAME-CONTENT AWARE’ ENCODING TECHNOLOGY 

In [21], we proposed an AI driven method to optimize the video encoder configuration 
according to the input signal characteristics, specifically designed for real-time encoding 
applications. This content aware encoding method monitors the CPU usage and seamlessly 
adjusts the encoder configurations according to the available resources. If the input content 
requires less computational resources, more encoding tools can be enabled to maximize 
compression efficiency. If the content complexity increases computational requirements, 
some encoding tools may be disabled or restricted to guarantee real-time constraints can 
be fulfilled. 

This approach guarantees compression efficiency and computational resource usage are 
maximized but requires ranking each encoding tool and encoding parameter relative to its 
compression efficiency to computational complexity ratios. Since the impact of each tool is 
dependent on the input video characteristics, AI is used to estimate the impact and cost of 
each tool based on the input image characteristics on real-time, so that the encoding tool or 
parameter that provides the largest compression efficiency gains with a minimum increase 
in computational complexity for that specific content are prioritize if resources are 
underutilized, while the ones that provide the lowest ratios are prioritized to be disabled if 
required.  

To validate this content aware approach for video game content, we compared it to a 
reference case where encoding tools are dynamically enabled in a fixed order, independent 
of the input content and defined to maximize the compression efficiency on natural content. 
Both configurations were run in the same computational resources and only standard 
encoding tools were included in this evaluation (the specific screen content tools mentioned 
in the previous sections are out of scope for this evaluation). It was observed that the content 
aware approach achieved compression gains of 7.4% in H.264 and 6.9% in HEVC (average 
BD-SSIM), by simply prioritizing encoding tools with a larger impact while encoding video 
game content.  

Overall, it was observed that the motion estimation strategy has a very significant impact on 
compression efficiency for video game content, while the motion refinement itself has a 
lower impact than for natural content. Similarly, picture partitioning and mode decision 
strategy have a higher weight on the compression efficiency of video game content, with the 
compression efficiency being somewhat less dependent on the GOP sequencing and 
transition management.  



        

CONCLUSION 

Motivated by the growing traffic of live video game streaming, and related esport market, we 
investigate in this work the possible encoding optimizations and normative tool set to best 
compress and stream game content. We first identify the main distinguished signal 
characteristics of game content in comparison to natural content. From this knowledge we 
share some practical examples of relevant encoding strategies into an optimized HEVC 
encoder that provide significant improvements in compression efficiency or encode run-
time/CPU cycle saving in the context of video game coding. The suggested optimization 
techniques are ranging from bitrate trading and adaptive quantization within a GOP, frame-
adaptative deblocking and smoother in-loop reference sample filtering, the use of 10-bit 
encoding accuracy to adaptive motion precision estimation and fast subpel ME. All 
combined, they show potential for about 10% average BD-rate gain in compression 
efficiency. Additionally, we review normative SCC-related tools, as adopted in HEVC SCC 
extension and VVC, discuss their design, and assess their compression performance for 
game content based on reference SW models. This specific tool set provides substantial 
bitrate saving for the same MS-SSIM or PSNR score with the main interesting features being 
the IBC and the AMVR. Finally, leveraging on AI-based content-aware method, we report 
that compression efficiency can be improved by 7% in H.264 or HEVC optimized 
implementations by simply prioritizing encoding tools with a larger impact while encoding 
video game content. Overall, we highlight and demonstrate a strong basis of complementary 
techniques for significantly improving the coding of video game in practical video streaming 
solution. 
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