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ABSTRACT 

This paper describes the ongoing activities of the Enhanced Video coding (EVC) 
project of the Moving Picture, Audio and Data Coding by Artificial Intelligence 
(MPAI). The project investigates how the performances of existing codecs can be 
improved by enhancing or replacing specific encoding tools with AI-based 
counterparts. The MPEG EVC codec baseline profile has been chosen as 
reference as it relies on encoding tools that are at least 20 years mature yet has 
compression efficiency close to HEVC. A framework has been developed to 
interface the encoder/decoder with neural networks, independently from the 
specific learning toolkit, simplifying experimentation. So far, the EVC project has 
investigated the intra prediction and the super resolution coding tools. The 
standard intra prediction modes have been integrated by a learnable predictor: 
experiments in standard test conditions show rate reductions for intra coded 
frames in excess of 4% over the reference. The use of super resolution, a state-
of-the-art deep-learning approach named Densely Residual Laplacian Network 
(DRLN), at the decoder side have been found to provide further gains, over the 
reference, in the order of 3% in the SD to HD context.  

 

INTRODUCTION 

MPAI is an international, unaffiliated, non-profit standards developing organisation that has 
the mission to develop Artificial Intelligence (AI) enabled data coding standards. Its 
standard development process corrects other standardisation bodies’ shortcomings, by 
adding a clear Intellectual Property Rights (IPR) licensing framework. MPAI has already 
developed the AI Framework (AIF) standard (MPAI-AIF), specifying AIF as an environment 
capable of managing the life cycle of AI Workflows (AIW) and their components called AI 
modules (AIMs). AIWs are defined by their function, i.e. an MPAI-specified Use Case, the 
syntax and semantics of the input and output data and the AIM topology. Similarly, AIMs 
are defined by their function (e.g. motion compensation) and the syntax and semantics of 
the input and output data, but not the AIM internals. By basing its standards on AIMs, 
implementers of MPAI standards can have a low entry barrier to an open competitive 
market for their implementations because application implementers can find the AIMs they 
need on the open market. The MPAI-AIF standard is currently being extended by adding 
the capability to access trusted services.  

Since the day MPAI was announced, there has been considerable interest in the 
application of AI to video. Video contents nowadays accounts for more than 70% of 
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Internet traffic volume [Cisco, (1)], hence the interest into efficient video coding 
technologies able to cope with tomorrow bandwidth-demanding video services (4K video, 
immersive contents, etc.). 

Existing video coding standards used in Internet streaming or aerial broadcasting over the 
air or cable rely on a clever combination of hand-designed encoding tools, each bringing 
its own contribution to the overall codec performance as shown in Figure 1.  

This can be achieved by predicting 
the picture from neighbouring data 
within the same picture (known as 
intra-prediction) or from data 
previously signalled in other pictures 
(known as inter-prediction). Intra-
prediction uses previously decoded 
sample values of neighbouring 
samples to assist in the prediction of 
current samples. 

The residual signal is then 
transformed via discrete cosine 

transform, allowing low-pass 
filtering in the transformed domain. 
Coefficient decimation and the 
subsequent quantisation is the lossy part of the compression process that allows to reduce 
the high frequency rate while keeping the resulting artefacts bearable to the human 
observer. 

The resulting signal is entropy encoded, which is a lossless form of compression.  

Within the encoder, when some sort of prediction is enabled, the encoded signal may be 
reconstructed through a de-quantisation and inverse transformation step and the input 
visual data is reconstructed by adding the predicted signal. Filters, such as a deblocking 
filter and a sample adaptive offset filter are used to improve the visual quality. The 
reconstructed picture is stored for future reference in a reference picture buffer to allow 
exploiting the similarities between two pictures.  

The motion estimation process evaluates one or more candidate blocks by minimizing the 
distortion compared to the current block. The residual between the current and optimal 
block is used by the motion compensation, which creates a prediction for the current block. 
The inter-prediction exploits redundancies between pictures of visual data. Reference 
pictures are used to reconstruct pictures that are to be displayed, resulting in a reduction in 
the amount of data required to be transmitted or stored. 

However, since resolution and frame rates are increasing at the same time, relying on 
hardware advances is no longer sufficient for some applications. Over the past years, the 
research community has investigated the recent developments in Artificial Intelligence (AI) 
and Machine Learning (ML), to push the boundaries and deliver industry-leading video 
quality and hardware efficiency. 

Figure 1: Hybrid video codec schema 
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There are two main approaches in the AI-based video coding research community: 1) one 
approach introduces learning based algorithms combined with traditional image video 
codec, trying to replace one coding block with the AI-based one; 2) an End-to-End (E2E) 
approach which is mainly focused on replacing the entire chain with a pure deep learning 
based compression. 

Both research directions are being explored within MPAI by the End-to-End Video Coding 
group, (EEV), and the Enhanced Video Coding group, (EVC), respectively. This document 
details the recent activities of the EVC group. 

The primary goal of MPAI-EVC is to enhance the performance of traditional video codecs 
by integrating AI-based coding tools. The first step is the MPAI-EVC Evidence Project 
[Chiariglione et al. (2)] with the intent to demonstrate that AI tools can improve the MPEG-
5 EVC efficiency by at least 25%. Two main tools have been investigated, namely the intra 
prediction enhancement and the super resolution.  The EVC reference schema is depicted 
in Figure 2.  

 

Figure 2: Reference schema for EVC Evidence project 

A parallel activity to the MPAI-EVC Evidence Project is the MPAI End-to-End Video 
Coding project (MPAI-EEV) aiming to address the needs of the many who need not only 
environments where academic knowledge is promoted but also a body that develops 
common understanding, models and eventually standards-oriented End-to-End video 
coding solutions. MPAI-EEV can cover the medium-to-long term video coding needs. 
Currently the group has developed a study of the state of the art of end-to-end video 
coding and has decided to start from the OpenDVC [Yang et al. (3)] software to develop 
a reference model that will be used for collaborative investigations.  

The rest of the paper describes in detail the activities of the EVC project with the Intra 
prediction and Super resolution tools. 

 

INTRA PREDICTION TOOL 

The first tool investigated by the EVC project is intra prediction tool, with the goal of 
integrating a learnable intra predictor within the EVC encoder. Intra-frame prediction 
leverages the spatial correlation within the same picture generating a predictor for the 
Coding Unit (CU) to be encoded by extrapolating pixel values from a previously encoded 
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neighbourhood. The predicted block is then subtracted from the original block, producing a 
residual block that is transformed, quantized and entropy coded before being inserted into 
the bitstream with the predictor mode index. At the decoder side, the signalled predictor is 
generated from the decoded context and then the residual is decoded, added to the 
predictor, recovering the encoded block. The rationale behind intra prediction is that 
encoding the residual requires fewer bits than encoding the original block. The better the 
predictor, i.e. the closer to the block to be encoded, the lower the residual rate and the 
higher the coding efficiency. The MPEG-5 EVC base profile offers 5 intra prediction 
modes: DC, horizontal, vertical and two diagonal modes and for each CU, the encoder 
selects the intra mode that minimises the residual rate, which may be then put into 
competition with other modes. We addressed the problem of predicting a block from its 
context as an image inpainting problem, i.e. recovering pixels of an image that are 
unavailable due to, e.g. occlusions. Recently, deep neural networks [LeCun et al. (4)] have 
shown to outperform classic inpainting methods thanks to their ability to learn complex 
nonlinear functions. We leverage recent advances in deep generative models recasting 
the task of generating an intra predictor as a hole inpainting problem [Pathak et al. (5)] 
following promising works with different codecs [Wang et al. (6), Dumas et al. (7)]  

 

Figure 3: Architecture and procedure for training the convolutional autoencoder used to 
generate a learnable intra predictor. In this example, a 32x32 predictor is generated from a 

64x64 context. 

Figure 3 shows the convolutional autoencoder architecture that we adapted towards the 
task of generating an intra predictor. For the sake of simplicity, we exemplify the case of 
generating a 32x32 predictor from a 64x64 context, however similar considerations hold 
for the other CU sizes supported by EVC (16x16, 8x8, 4x4 CUs). The autoencoder 
receives in input a 64x64 patch representing the encoded context also available at the 
decoder (D0, D1, D2). The 32x32 bottom-right corner (P3) is the predictor to be generated, 
i.e. the area of image to inpaint. The autoencoder is trained to output a 32x32 patch (P3’) 
that represents our learnable predictor and should be a reasonable approximation of the 
original block O3. The autoencoder includes 5 pooling layers and relies on LReLUs as 
activations of the hidden layers. The autoencoder input is normalised in the [-1, 1] range 
and the output layer has a TanH activation. 

The autoencoder is trained by minimising the absolute error between P3’ and O3 on a 
dataset of 800 images of different resolution and content type randomly sampled from the 
AROD dataset [Schwarz et al. (8)]. While these images are JPEG compressed, they are 
very high quality, which is almost equivalent to training over uncompressed images for the 
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purpose of training a neural network. Contrary to similar approach, we train one single 
network instance regardless of the encoding QP, hence simplifying the complexity of the 
proposed approach. 

From each image, a 64x64 patch is cropped at a random position, the patch is then 
randomly flipped horizontally and vertically, followed by a 90 degrees random rotation. Our 
experiments showed that this form of augmentation is key to prevent the autoencoder from 
overfitting on the training data. The bottom right 32x32 corner of the patch represents the 
O3 original CU to recover, whereas the rest of the patch represents the (D0, D1, D2) 
context. Prior to training, the P3 corner is filled with black pixels to represent the image 
area to be inpainted. The autoencoder is trained with SGD with a learning rate of 0.01 and 
over batches of 64 patches. 

Once the autoencoder has been trained, it is interfaced with the EVC encoder as follows. 
First, a networked server process is started, loads the trained autoencoder into the GPU 
memory, sets up an UDP socket in listening mode and awaits for incoming messages. The 
EVC encoder was modified so that the mode 0 intra predictor (DC mode) is repurposed to 
handle the predictor generated by the autoencoder. For each intra-coded CU, the EVC 
encoder was modified to send to the server the 64x64 decoded context (D0, D1, D2, P3). 
The server inputs such context to the trained autoencoder and returns the 32x32 output 
P3’, i.e. the learned predictor, to the encoder via the same UDP socket. The UDP socket 
scheme allows one to easily experiment with different neural network frameworks 
(PyTorch, TensorFlow, Keras, etc.) without modifying the encoder, thus simplifying the 
experiments. Finally, the modified EVC encoder replaces the DC predictor with the 
autoencoder generated predictor and the encoding proceeds as usual, i.e. by putting the 
learned predictor in competition with the other 4 EVC intra predictors.  

We point out that no modifications are required to the signalling since the DC mode is 
simply replaced with our predictor, and the bitstream remains fully decodable under the 
reasonable assumption that the EVC decoder has available the same autoencoder used 
by the EVC encoder. 

We experimented encoding the first frame of the well known JVET CTC sequences in 
Table 1 in the 22-42 QP range and the results are shown in Table1 (32x32, 16x16 and 8x8 
CUs only benefit from the learned predictor, while 4x4 CUs rely on the original DC 
predictor).  
 

  
Proposed Oracle 

Sequence Class BDRate 
  [%]      

BDPSNR 
[dB] 

BDRate 
  [%]   

BDPSNR 
[dB] 

Campfire Class A 
3840x2160 
60/50 fps 
10 bpp 

  

-1.51 0.06 -3.33 0.12 

CatRobot -5.54 0.18 -7.02 0.23 

DaylightRoad2 -6.50 0.16 -7.79 0.20 

FoodMarket4 -8.62 0.26 -9.85 0.29 

ParkRunning3 -1.63 0.10 -2.67 0.17 

Tango2 -7.30 0.14 -8.86 0.17 

Average -5.18 0.15 -6.59 0.20 

BQTerrace Class B -3.11 0.19 -4,30 0,27 
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BasketballDrive 1920x1080 
60/50 fps 
10/8 bpp 

-7.66 0.23 -8,87 0,27 

Cactus -4.96 0.21 -6,41 0,27 

MarketPlace -4.71 0.17 -7.00 0,26 

RitualDance -8.51 0.47 -10,66 0,59 

Average -5.79 0.25 -7,45 0,33 

BQMall Class C 
832x480 

60/50/30 fps 
8 bpp 

-2.68 0.17 -3,6 0,22 

BasketballDrill -4.32 0.22 -5,2 0,27 

PartyScene -1.32 0.09 -1,91 0,14 

RaceHorsesC -3.70 0.24 -4,78 0,31 

Average -3.00 0.18 -3,87 0,23 

BQSquare Class D 
416x240 

60/50/30 fps 
8 bpp 

-0.51 0.04 -0,9 0,08 

BasketballPass -2.03 0.12 -2,66 0,16 

BlowingBubbles -2.14 0.13 -2,85 0,17 

RaceHorsesD -2.28 0.16 -3,09 0,22 

Average -1.74 0.11 -2,38 0,16 

FourPeople Class E 
1280x720 

60 fps 
8 bpp 

-8.26 0.51 -9,82 0,61 

Johnny -7.53 0.35 -9,25 0,43 

KristenAndSara -6.32 0.37 -7,71 0,45 

Average -7.37 0.41 -8,93 0,5 

ArenaOfValor Class F 
Screen content 
Multiresolution 

60 fps 
8 bpp 

-2.57 0.16 -3,97 0,24 

BasketDrillText -3.14 0.18 -4,6 0,25 

SlideEditing -0.20 0.03 -0,72 0,1 

SlideShow -0.33 0.04 -0,82 0,1 

Average -1.56 0.10 -2,53 0,17 

Grand Average All of the above -4,13 0,19 -5,33 0,25 

Table 1: Results obtained by replacing the DC mode with a convolutional autoencoder 
generated intra predictor, QP 22-42 range. 

The experiments report BD-Rate reductions in excess of 8% and BD-PSNR improvements 
close to 0.5 dB for some sequences. The experiments show gains especially for 
sequences above 720p: we attribute that to the fact that most of the training images are 
above 600 pixels in height. We hypothesise that the addition of smaller images to the 
training set would boost the performance on classes C and D. Lowest performance is 
achieved for screen contents (Class F), a non-unexpected result if we consider that our 
training set contains no computer screen images. A visual inspection of the decoded 
sequences shows no perceivable artefacts despite the learned intra predictor. 

Finally, the two rightmost columns of the table report the performance of the scheme when 
a sixth hypothetical Oracle predictor is put into competition with the standard 5 intra EVC 
modes, rather than replacing the DC predictor. While the extra signalling is not present 
and so the bitstream is not decodable, this scheme shows extra gains above 1%, 
suggesting that proper implementation of our learned intra predictor may yield further 
gains [Helle et al. (9)] if put into competition with the other modes. 

Concerning the complexity of the proposed intra tool, our autoencoder includes about 3M 
learnable parameters. While for the sake of simplicity the autoencoder retains the same 
architecture regardless the CU size, for CUs smaller than 32x32 some convolutional layers 
can be dropped, reducing such complexity. About the end-to-end inference time of our 
prototype implementation, it is about 22ms per 32x32 CUs on a NVIDIA T4 GPU. We point 
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out that such number includes the overhead associated with the UDP socket 
communications that would be absent in an optimized implementation relying on direct 
GPU-coupling or FPGA acceleration. 

 

SUPER RESOLUTION TOOL 

The super resolution tool is used as an upsampling step in the EVC decoding system and 
implemented as a post-loop filter. For better and easier control of the possible 
improvement of the overall performances of the EVC decoding system, an existing super 
resolution deep-learning based approach has been applied to the decoded picture allowing 
to recover the full resolution frame.  

Among several state-of-the-art super resolution approaches, we selected the well known 
Densely Residual Laplacian Network (DRLN) [Anwar et al. (10)], which has been proven to 
provide best performances among the existing approaches. This architecture is employed 
as an up-sampler whenever the input sequence has been downsampled, into the decoding 
system. The overall deep-learning structure  of the DRLN approach is depicted in Figure 4: 

 

Figure 4: The detailed network architecture of the DRLN model. The top figure shows the 
whole network architecture consisting of six cascaded residual blocks (RB). The bottom 

figure shows the internal structure of sub-components i.e. densely residual laplacian module 
(DRLM) and Residual Units(RU). Courtesy of Asfa Jamil, after [Helle et al. (9)] 

Our experiments have been concentrated in demonstrating the capabilities of the DRLN 
approach to improve the performances of the EVC coding system, for the upsampling from 
SD to HD resolution (upsampling of a factor of 2). To achieve it, we have first prepared a 
dataset where the initial 2000 4K images from the Kaggle dataset have been resized to 
HD (1920x1080) and SD (960x540) resolutions using Lanczos filtering. Images have been 
converted to the YUV format and EVC encoded, using baseline profile, random access 
configuration with 32 pictures hierarchical GOP at 15, 22, 30, 45 fixed QPs. The HD 
counterpart of the frames pair is an encoded EVC bitstream at full HD. This dataset 
represents the image pool from which the training and validation datasets were extracted. 

Using the DRLN directly on the full resolution of the input-output frames, complexity issues 
could be met, i.e. high computational costs, as well as memory constraints. To avoid these 
issues, we have designed a cropping strategy for developing training and validation 
datasets. 
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The frames have been subdivided in crops of a predefined size, which could fit the 
memory RAM available in the GPU used in the training step. By doing so, however, a large 
number of crops were generated and many of them were not carrying significant 
information making them redundant, and consequently they were increasing the requested 
training time. To solve this issue, we have employed two strategies, both based on the 
entropy information of the input frame. This is calculated by estimating at each pixel 
position (i,j) the entropy of the pixel-values within a 2-dim region centred at (i,j). The first 
strategy uses a random crop if, and only if, its average entropy exceeds a given threshold. 
The second strategy selects n crops, of the same size, from the total crops available in 
each frame. This is based on the importance sampling technique applied to the entropy 
values distribution of all crops in each frame. A particular attention needs to be given to the 
right combination of the crop and batch sizes as a trade-off with respect to GPU memory 
consumptions can be achieved. The table below shows the tested combination: 

As described above, two cropping 
strategies have been employed to 
efficiently perform the training tasks. 
The hyperparameters and 
parameters used during the training 
phase were the followings: learning 
rate (lr) 10e-5, batch size 6 and 2 
for the crop strategy based on 
importance sampling, epochs 50, 
the resolution of the crop input was 128x128, while for the crop output was 256x256, the 
dataset used was the one with deblocking option activated. The Mean Square Error (MSE) 
metric was used as a loss function.  

The importance sampling performances showed an improvement in terms of PSNR when 
compared with the random crop strategy. Moreover, better generalisation results are due 
to the fact that the training and validation sets performance are not showing large 
discrepancies as in the case of the random crop approach. This was noticed on all the 
QPs used in the experiment. 

Based on these results we have decided to use the importance sampling approach. The 
strategy adopted to prepare the training and the validation datasets has been to use 80% 
of the original crop dataset, selected with the importance sampling strategy, as training 
dataset and the remaining 20% as validation datasets.  

We have trained the DRLN on all the QPs for 50 epochs using the same hyperparameters 
and parameters used for the selection of the cropping strategy. 

The training performances for all the QPs are shown in Figure 5. These performances on 
the training and validation datasets do not have large disagreements in terms of PSNR, 
suggesting that the training reached good generalisation performances. 

input - Batch size GPU memory usage 
(GiB) 

48 - 16  9.7 

72 - 16 18.0 

96 - 10 19.7 

128 - 6 20.0 

Table 2: Tested combinations of crop and batch sizes 
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Based on these results we 
have chosen the DRLN 
weights at epoch 47 for QP 15, 
epoch 45 for QP 30 and epoch 
47 for QP 45 and performed a 
test on a new set of 8 
sequences for understanding 
its generalisation capabilities, 
as well as to quantify the gain 
or the loss in terms of BD-rate 
performances with respect to 
the baseline EVC codec. 

In order to provide content 
diversity, three 4K sequences 
from the SVT archive (Crowd 
Run, Ducks Take Off and Park 
Joy) have been resized to HD 
(1920x1080) and SD 
(960x540) resolutions using Lanczos filtering. Also 5 HD sequences (one public domain: 
Rush Hour, and four proprietary sequences: Diego and the Owl, Rome 1, Rome 2 and 
Talk Show) have been resized to SD (960x540) resolution using Lanczos filtering. The test 
sequences have been coded using the same encoder configurations as the training set. 
The BD-rate results of the test reported in Table 3 and Figure 6 show and average 
improvement in terms of  BD-rate of -3.14% for all the test sequences (negative values 
indicating coding efficiency gain). However, we may notice that there is large variation in 
terms of performances, across the different streams, e.g. the streams “Rome 2” and “Talk 
Show” provide a large improvement, while the stream “Diego and Owl” shows a consistent 
degrading performances when compared to the baseline EVC. This may be related to the 
generalization capability of DRLN, which it will need to be further investigated.  
 

Sequence Class BD-Rate 

Crowd Run Class B 1920x1080 60/50 fps, 8 bpp -1.24% 

Ducks Take Off Class B 1920x1080 60/50 fps, 8 bpp  2.12% 

Park Joy Class B 1920x1080 60/50 fps, 8 bpp  1.40% 

Diego and Owl Class B 1920x1080 60/50 fps, 8 bpp  8.11% 

Rome 1 Class B 1920x1080 60/50 fps, 8 bpp  0.19% 

Rome 2 Class B 1920x1080 60/50 fps, 8 bpp -18.81% 

Rush Hour Class B 1920x1080 60/50 fps, 8 bpp  4.90% 

Talk Show Class B 1920x1080 60/50 fps, 8 bpp -21.75% 

Average: -3.14% 
 

Table 3: BD-rate performances on all the 8 test sequences 

Figure 5: training and validation performances of the 
SD2HD upsampling on all the QPs. 
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Figure 6: BD-rate performances on all the 8 test sequences 
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NEXT STEPS AND CONCLUSION 

MPAI is a unique environment where experts working on different application areas and 
data type apply Artificial Intelligence methods to achieve optimal data coding formats. 

The current two video coding projects – AI-Enhanced Video Coding (EVC) and End-to-End 
Video Coding (EEV) are benefitting from the environment.  

Concerning the intra predictor tool, the current results of our experiments with a learned 
predictor constrained to a few CU sizes showed average rate savings in excess of 4% and 
up to 8% for some sequences. Such gains are expected to improve when our scheme is 
applied to 4x4 CUs as well. Also, a proper implementation of our learned predictor where it 
is put into competition with the 5 EVC modes is expected to enable further gains. 
Moreover, a set of training images better representative of low resolution images and 
screen contents may improve the performance of our scheme towards this type of content. 

The SR tool has shown good overall performances in terms of BD-rate over the standard 
baseline EVC decoding for the SD2HD task. The model for the task HD24K is currently 
under training and its preliminary results are also encouraging.  
MPAI-EVC is an exploration seeking to demonstrate that AI coding tools can be 
successfully applied to a traditional video coding architecture and further extend the 
capability to reduce the bitrate required to represent moving picture information. Once the 
goal will be achieved – which may be rather soon – MPAI intends to issue a Call for 
Technologies and develop a standard that satisfies both functional (MPAI, [11]) and 
commercial requirements. The latter will be embodied in a “Framework Licence”. Unlike 
Fair, Reasonable and Non Discriminatory (FRAND) declarations, the Framework Licence 
includes terms and conditions without values (dollars, percentages, rates, dates, etc.) and 
a declaration that the licence will be issued before commercial implementations are 
available on the market at a total cost in line with the total cost of the licenses for similar 
data coding technologies considering the market value of the specific standardised 
technology (MPAI, [12]). 
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