

EFFICIENT DELIVERY AND RENDERING ON CLIENT

DEVICES VIA MPEG-I STANDARDS FOR EMERGING

VOLUMETRIC VIDEO EXPERIENCES

C. Guede1, P. Fontaine1, J. Mulard1, B. Leroy1, C. Quinquis1, R. Gendrot1,

S. Gudumasu2, V. Allié1, B. Kroon3, B. Sonneveldt3, R. Schimanofsky3

1 InterDigital, France, 2 InterDigital, Montreal and 3 Philips, Eindhoven

ABSTRACT

This paper presents a real-time implementation of a platform jointly

developed by InterDigital and Philips that showcases use cases leveraging

the MPEG volumetric (MPEG-I V3C) and 2D video standards (VVC, HEVC).

We will detail how our platform enables interoperability within existing and

emerging extended reality (XR) ecosystems, including the acquisition,

streaming, and real-time interactive playback of volumetric video on current

and future client devices, for use in applications like telelearning, free-

viewpoint sport replays, and 3D telepresence in connected ecosystems like

the metaverse.

MPEG’s Visual Volumetric Video-based Coding (V3C) standard is an

extensive framework for the coding of volumetric video, from dynamic point

clouds (V-PCC) to multi-view plus depth and multi-plane image

representations (MIV), to offer a single bitstream structure with a uniform

bridge to systems-level standards. The V3C carriage standard defines how

volumetric content can be stored, transported, and delivered to the end-

user, and it repurposes existing 2D video hardware decoding capabilities

and GPUs to decode and render volumetric video.

INTRODUCTION

The increasing popularity of XR applications is driving the media industry to explore the

creation and delivery of new immersive experiences, while pushing engineers and inventors

to address the challenges of real video content manipulation.

A volumetric video is comprised of a sequence of frames, and each frame is a static 3D

representation of a real-world object or scene capture at a different point in time. Volumetric

video is bandwidth-heavy content that can be presented as dynamic point clouds, multi-view

plus depth, or multi-plane image representations. These high bandwidth constraints can be

reduced through dedicated compression schemes adapted to these types of contents to

reach data rates and files sizes that are economically viable in the industry. Standards play

a crucial role in ensuring interoperability across these different types of contents and

experiences, and this paper presents the Moving Picture Experts Group (MPEG) Visual

Volumetric Video-based Coding (V3C) standard [1] as an open standard solution for efficient

compression and streaming of volumetric video. The MPEG community has described use

cases for the V3C codec [6] [17].

Looking at trends towards metaverse developments, some could consider a transitioning

path from current 2D experiences to future metaverse worlds. The presented platform has

been developed as such to allow a remote user to access 2D content first and then further

engage with the proposed topic with volumetric viewing; allowing the enriched experience

to be brought seamlessly to the user.

This paper presents a real-time implementation of a platform jointly developed by InterDigital

and Philips. This platform, illustrated in Figure 1Figure 1, ingests pre-recorded 2D and

volumetric video content, provides real-time streaming and rendering. Final content is

proposed to the user on various devices such as 2D screens, smartphones or tablets, and

VR/AR head mounted displays.

Figure 1 – Immersive Video Decoder Platform - end-to-end view

The organization of the paper is as follows: the standards section will give an overview of

the two implemented V3C-based volumetric codecs, namely V-PCC and MIV; along with the

V3C carriage layer for systems. The platform architecture section will depict presented

Immersive Video Decoder Platform and will highlight principal software components allowing

real-time streaming and rendering and proposed integration into XR ecosystem. The

evaluation section will provide metrics of the current implementation measured on laptop,

smartphones, and tablet devices.

V3C STANDARDS

MPEG has developed two standards that adopt a similar video-based coding approach

leveraging traditional 2D codecs (such as HEVC and VVC) but are targeting different

volumetric representations and applications, dynamic point clouds and multi-view videos.

The common aspects including bitstream structure have been regrouped into the Visual

volumetric video-based coding (V3C) standard [1]. To enable storage and delivery of such

compressed volumetric content, MPEG has developed Carriage of V3C data [3], and to

composite multiple assets into a single scene, Scene Description [4] was created.

Visual Volumetric Video-based Coding (V3C)

V3C [1] maps volumetric data onto one or more flat video frames composed of image

patches that can be compressed using any legacy 2D video codec (see Figure 2).

The bitstream structure consists of a sequence of V3C units. The first one is a V3C

parameter set (VPS) that provides sufficient information for a decoder to determine if it can

handle the bitstream. The remaining V3C units carry atlas and video sub-bitstreams.

Mapping onto flat video frames allows for an efficient decoder/renderer model whereby most

of the decoding is offloaded to hardware video decoders and rendering is performed on a

GPU. Because the atlases may have multiple video components, decoding a V3C bitstream

may require many video decoder instantiations.

Figure 2 – V3C codec model

Video-based Point Cloud Coding (V-PCC)

V-PCC [1], Annex H handles the dynamic category of Point Clouds identified by the MPEG

community, which corresponds to dense point cloud datasets varying in time for applications

that have been identified in [16].

The next section provides details on the different encoding and decoding steps shown in

Figure 2. Focus on the lossy mode random access configuration is done in the following

document even if V-PCC can encode losslessly. Further details on different coding tools and

strategy are given in [5].

First, during the atlas generation step, each point cloud frame is projected onto a given

number of 2D planes using a cube of orthographic projections by regrouping points into

connected components sharing neighbourhood with similar normal. These projections are

called patches. Then, patches are arranged into 2D video frames, composed of a trio of

component video frames: a 2D geometry frame, that stores the depth values for all

connected components, a 2D attribute frame, that stores the corresponding attributes

components (e.g., the colour), and a 2D occupancy frame, that indicates which part of the

2D atlas is valid for the 3D reconstruction. The occupancy frame is lossless encoded and

subsampled to avoid a high cost in coding. These steps can be done several times as

several points may be projected to the same 2D pixel, and several maps could be generated.

In addition, from the atlas generation, associated data are generated to define how to get

back to the 3D volumetric frame using 2D representations. They are known as atlas data

and represent a relatively small amount of data compared to video sequences. Atlas data

also specify encoding tools (see [5]) that are used during the reconstruction to improve the

quality of the point cloud.

A performance analysis done in the SMPTE Motion Imaging Journal [8] provides a

comparative study on the combination of different V-PCC tools and gives conclusions in

terms of objective and subjective tests while comparing different profiles.

By mirroring effect, the V-PCC decoder is a set of three 2D video decoders. These three

video components, plus a light parsing of metadata allows the reconstruction of the

volumetric data using reconstruction tools defined at the encoder side to improve the point

cloud quality. At the end, a set of 3D points to be rendered on the targeted devices is

obtained.

MPEG Immersive Video (MIV)

MIV [2] [18] is a set of extensions and profile restrictions on V3C. It supports three image-

based volumetric video representations:

• Multi-view + depth (MVD) with texture and geometry video

• Multi-view with only texture video and decoder-side depth estimation

• Multi-planar images (MPI) with texture and transparency video

The main addition that MIV brings to V3C is the transmission of view parameters via V3C

common atlas data (Figure 2) comprising camera intrinsics, camera extrinsics, projection

type and depth quantization parameters. By transmitting (patches of) multiple cameras it is

possible to preserve view-dependent appearance of objects. It also allows for low complexity

real-time encoding by postponing part of the 6DoF scene understanding to the client side.

Other extensions are the ability to embed occupancy information in the geometry video, and

to associate an entity ID to each patch, thus allowing for object-based coding.

Because MIV is based on one or more views, whether captured from physical cameras or

rendered on the encoder side, it is not generally possible to render the volume for any angle

because there may be missing data. It would require having cameras all around the scene

which is not always feasible or useful. The viewing space that is implicitly known and

optionally transmitted indicates for which positions and viewing directions a reasonable

rendering quality is to be expected. A client may use this information to adjust the rendering

or redirect the viewer.

Carriage of V3C Data

The system layer of the V3C standard is defined in the Carriage of V3C Data standard [3],

which specifies how the V3C data may be carried for different applications.

The carriage standard translates the V3C units in a V3C bitstream to boxes in an ISO base

media file format (ISO BMFF) container. This enables existing systems-level standards such

as the MPEG-4 file format, which is derived from ISOBMFF, and MPEG dynamic adaptive

streaming (DASH) to handle V3C data. The standard introduces three modes for storing

V3C-coded content in ISOBMFF: single-track storage, multi-track storage, and non-timed

storage. The multi-track encapsulation mode stores the V3C bitstream in the ISOBMFF file

in several tracks, where each track represents either part of, or a complete V3C component.

This is the preferred mode for streaming applications since independent encoders can run

in parallel and the resulting bitstreams can be stored into an ISOBMFF-compliant file, or set

of files, as separate tracks. This provides a flexibility where the extraction and direct

processing of each V3C component by their respective decoder becomes much easier

without the need to reconstruct the V3C bitstream. The V3C carriage standard also defines

how to signal V3C content in the Media Presentation Description (MPD) for DASH-based

delivery for both the single-track and multi-track encapsulation modes. This includes defining

V3C-specific DASH descriptors as well as restrictions on the DASH segments generated for

the V3C content. As with encapsulation, the multi-track mode provides more flexibility by

enabling adaptation across several dimensions as each V3C component is represented by

its own Adaptation Set. A streaming client can then prioritize or completely drop some

components or maps when making adaptation decisions. V3C video component

representations can be encoded using different video codecs or different bitrates to allow

for efficient adaptive bitrate streaming.

IMMERSIVE VIDEO DECODER PLATFORM ARCHITECTURE

The objective of the Immersive Video Decoder Platform (Figure 3) is to enable real-time

rendering of 2D and volumetric V3C video content to allow smooth integration of these

technologies into XR applications. A streaming server processes 2D and V3C bitstreams

into DASH segments which can then be streamed to multiple video clients over Internet

networks. On the client side, the Immersive Video Decoder Platform receives DASH

segments via the DASH client and passes data chunks to the decoder which is connected

to a host application interfacing with the end-user.

Figure 3 – Immersive Video Decoder Platform global architecture

Details of the Immersive Video Decoder Platform implementation are presented below,

where focus is put on V-PCC and MIV content but 2D content will follow the same

architecture path.

Native Decoder Plugin

The native decoder plugin (C++, OpenGL) manages both the decoding and rendering of a

V3C bitstream. It implements the Unity native render plugin API to leverage the engine

cross-platform capabilities and the numerous XR devices supported. It is composed of 5

main stages: a data interface stage, a demultiplexing stage, a decoding stage, a scheduling

stage, and a synthesizing stage, as shown in Figure 4.

For the data stage, the bitstream data is fetched either remotely using DASH or locally and

split into timestamped chunks delivered to the next stage. The demultiplexing stage uses

the parsing tools provided with the relevant test models (either Test Model for Category 2

R22.0 [9] or Test Model for MPEG Immersive Video 14 [10]) to extract the video bitstreams

and atlas data from the V3C bitstream units.

Figure 4 – Native decoder plugin High Level Architecture

V3C contents use multiple video streams, and the number of videos to be decoded varies.

This stage is responsible for starting the right number of decoders: 1 video decoder for 2D

content, 3 for V-PCC, 2 for MIV MVD or MIV MPI, 3 for MIV MVD+T; and providing them

with data. The atlas data skips the decoding stage and is directly sent to the scheduler.

For the decoding stage, video decoders relying on the FFMPEG media framework [11] and

[15] are used, which provides either a hardware accelerated HEVC decoder implementation

(Nvidia NVDEC for Windows [12] and MediaCodec for Android [13]) or a software

implementation of the VVC decoder (OpenVVC developed by INSA/IETR [14]).

To each decoder, an array of OpenGL textures to be used as output buffer is associated.

For hardware decoding, a direct GPU copy to speed up the processing is used. Once

decoded, the atlases are queued toward the scheduler.

The scheduling stage waits for the atlas data and video frames needed to synthesize one

frame of the content, packetize this data and waits until the frame timestamp is reached.

The data is then transferred to the relevant synthesizer.

Regarding the synthesizing stage, the host is responsible for issuing the rendering command

each time it wishes to render the content. It also provides the color and depth textures used

as render target for the synthesizers at initialization, as well as camera and viewport

information at each frame. The synthesizer then fetches the last decoded data packet and

renders the content, decoupling the decoding and rendering frame rates. Using shared color

and depth textures enables merging V3C content with a full 3D scene managed by the host

application.

Unity Host Application

The host application manages user input, camera movement and full scene rendering. A

simplified architecture of a basic Unity implementation [21] is presented in Figure 5. This

implementation uses a two-camera setup: a render camera and a UI camera. The render

camera draws all the 3D elements of the Unity scene into the shared colour and depth

textures. The plugin then uses the camera information to render the content into the same

textures. Finally, the colour buffer is rendered directly on a UI image. The second camera,

set to render only the UI, produces the final render.

Figure 5 - High Level Unity Implementation Architecture

Architecture advantages

As shown in this section, the main implementation modules of our Immersive Video Decoder

Platform are DASH streaming, dynamic video decoder(s) usage, hardware HEVC decoding

with direct GPU copy, native OpenGL rendering into the synthetiser, software VVC

decoding. The split architecture based on a native plugin implementation enables to reach

high performance and cover multiple hosts: the plugin already supports native C++ and Unity

based application and could easily be adapted to other hosts such as Unreal Engine. Finally,

management of 2D video content is directly supported thanks to the video-based nature of

the V3C codecs.

EVALUATION

The Immersive Video Decoder Platform evaluation was performed on Windows and Android.

With Windows 11 on Dell G5 Laptop (G5) with Intel Core i7 2.60GHz and NVidia GeForce

RTX 2060. With Android 13 on Samsung Tab S8 Ultra (S8) with Qualcomm SM8450 and

Qualcomm Adreno 730.

The next sections describe generation of V-PCC and MIV content that feeds the Platform

and results of the evaluation for each technology are given.

V-PCC Content Generation

For V-PCC, five input content items (Soccer Blue, Soccer Red, Dancer01, Acrobat01,

Acrobat Duo) have been delivered by the XD productions company, a service provider

company specialized in videogrammetry techniques [19]. Content screenshots are provided

in Figure 6. The capture setup is composed of about sixty 4K cameras, arranged in

hemispheres around the scene to be captured. The set is 15-meter in diameter for a 7-meter

diameter capture area. Two types of lenses are simultaneously used, with variable focal

lengths, which allows to adapt the size of the capture area, and to mix wide shots and close-

ups on the same captures to improve the quality of the textures. Each content item has then

been converted into point cloud frames contained in a 1024-sized bounding box with integer,

positive coordinates.

Each content item is encoded using the Test Model for Category 2 based on the release

R22.0 [9], at both R3 (QP geometry=24, QP Attribute=32, Occupancy precision=4) and R5

(QP geometry=16, QP Attribute=22, Occupancy precision=2) rates, as defined in CTC [7]

using the profile HEVC Main10 V-PCC Basic Rec0.

Figure 6 – XD Productions contents screenshots, from top right to left: Acrobat01, Soccer
Blue, Soccer Red, Dancer01, Acrobat Duo

When decoding 10-bit content on Android, a rescaling of the MediaCodec decoded video

frame is done, in turn corrupting the 3D reconstruction. No issues were detected on

Windows, nor using 8-bit content on Android. For easier cross platform comparison, the 8-

bit content on both platforms has been chosen. The frame size of the encoded videos has

been locked at 1492×1600 (1492x1920 for Acrobat01) on the encoder side to avoid dynamic

updates of the frame size during the decoding process. The encoding was done with a single

map in each atlas to limit the number of hardware HEVC decoders to 3, reducing the point

count for multi-layer content.

V-PCC Content

Name
FPS

Input average

point count/frame

Input

bitrate

(Mbps)

Rates

Output

average point

count/frame

Average

point count

ratio

Output bitrate

(Mbps)

Compression

ratio

Soccer Red 25 1065014 1371,16 R3 542 214 0,51 4,74 289

 R5 505 816 0,47 15,81 87

Acrobat01 30 824 905 1062,03 R3 840 691 1,02 4,42 240

 R5 811 090 0,98 20,86 51

Soccer Blue 30 274 665 353,62 R3 280 094 1,02 3,77 94

 R5 264 958 0,96 13,76 26

Dancer01 30 311 351 400,85 R3 137 204 0,44 1,67 240

 R5 127 989 0,41 6,68 60

Acrobat Duo 30 786 132 1012,11 R3 802 133 1,02 6,02 168

 R5 765 915 0,97 26,45 38

Table 1 – V-PCC Test Model for Category 2 release 22.0 rates.

Table 1 provides a summary of key characteristics of the input content and the encoding result.

Uncompressed bitrates are computed considering a 10-bit geometry and 8-bit per-channel

colour coding. Point counts ratios around 0.5 correspond to a single map being encoded for

a multi-map input and to encoder choices during the atlas generation phase. Variations in

output point number for the same stream at different rates is caused by the different

Occupancy Precision used.

MIV Content Generation

MIV performances were evaluated using four self-captured content items:

• Dance: shot with 6 Azure Kinect cameras at FHD resolution, placed in a linear array

spaced at an approximate 12 cm baseline, hardware synchronized and captured at

a rate of 15 fps. The depth-maps, available from the Kinect were ignored.

• Soccer: shot with 8 uEye UI-3080 CMOS cameras at FHD resolution, spaced at an

approximate 25 cm baseline, hardware synchronized and captured at a rate of 30 fps.

• Mannequin: Computer-Generated Images (CGI) content, recorded at 25 fps in Unity

using 15 FHD virtual cameras.

• Barn: shot with 15 Blackmagic Micro Studio cameras at 4K resolution, synchronized

using Genlock sync, captured at a rate of 30 fps and spaced at 29 cm baseline. Rigs

used for Barn and Mannequin allows horizontal and vertical parallax.

Content screenshots are shown in Figure 7 for Dance and Soccer and in Error! Reference

source not found. for Mannequin and Barn.

Figure 7 – Philips Content screenshots: Soccer, Dance

Figure 8 – Interdigital Content screenshots: Mannequin, Barn

Soccer and Dance recordings were prepared for encoding into MIV bitstreams using the

MIV Extended MVD+T profile, with texture, geometry, and transparency atlases. The

encoding performs the following steps: undistortion, camera extrinsic estimation, multiview

depth estimation and segmentation. Internally developed tools were used for the last two

steps to separately handle the (static) background and the (dynamic) foreground objects.

The result of the object segmentation is a second output of this step and is used in the MIV

encoding. The Dance content used an atlas frame size of 4096×2824 pixels, while the

Soccer content used an atlas size of 4096×3272 pixels.

Mannequin and Barn recordings were encoded using the MIV Extended MPI profile, which

uses texture and transparency atlases. Barn content is challenging due to complex scene

capture and real-time depth estimation tool used, generating lots of noise in the depth maps.

It has been selected as high bit rate reference to evaluate the performance of the MIV MPI

processing. All atlases were encoded into HEVC bitstreams using a 32 frame inter-period

and two bitrate profiles were used. Table 2 lists the contents key statistics. For the input

bitrate, the input resolution times the number of cameras was used, taking 25 bits per pixel

(10 for luminance, 5 for chrominance and 10 for depth). The input considered are a texture

(yuv 4:2:0 10-bit LE) and a depth (yuv 4:2:0 16-bit LE) video streams. Both contents used

an atlas frame size of 4096×4096 pixels.

For each content, a low rate and a high-rate encodings are generated with selected QPs for

texture, geometry (if applicable) and transparency atlases.

MIV Content

name
Profile FPS

Input Resolution

(HxWxN)

Encoder

input

bitrate

(Mbps)

Rates
QPs

[Text;Geom;Transp]

Encoder

output

bitrate

(Mbps)

Compression

ratio

Dance

MVD+T

Extended

profile

15 1920*1080*6 4449

Low [35; 35; 35] 5,89 756

High [25; 25; 25] 15,98 278

Soccer

MVD+T

Extended

profile

30 1920*1080*8 11865

Low [35; 35; 35] 12,55 946

High [25; 25; 25] 36,51 325

Mannequin
MPI

Extended
profile

25 1920*1080*15 35596
Low [43; na; 27] 11 3236

High [39; na; 18] 15 2373

Barn
MPI

Extended
profile

30 1920*1080*15 42715
Low [32; na; 44] 202 211

High [24; na; 44] 339 126

Table 2 – MIV Encoding Performances

Test Results

Each content is read locally and split into data chunks containing at most 32 frames and fed

synchronously with the target frame rate (i.e., a chunk every 1.0666s for 30 FPS or every

1.28s for 25 FPS, …). It plays for 1 minute starting at the first decoded frame while looping

if needed.

The rendering frame rate and the decoder frame rate were measured. The decoded frame

rate is set as the rate at which a full set of decoded frames plus the corresponding atlas data

is received, before scheduling. This explains why the decoder frame rate may exceed that

of the input content. These two measures are needed as both stages are not synchronised

in our implementation. Test on Windows are realized without V-sync to render as fast as

possible. On Android, the rendering is synchronized with the screen refresh rate by default

(120 Hz). The results are presented in Table 3 and Table 4 for V-PCC and MIV respectively.

Stream FPS Rates
Average Decoder FPS Average Renderer FPS

Rates
Average Decoder FPS Average Renderer FPS

G5 S8 G5 S8 G5 S8 G5 S8

Soccer Red 25 R3 25,35 25,17 292,94 30,20 R5 25,21 25,21 280,85 30,21

Acrobat01 30 R3 30,25 30,30 239,64 30,17 R5 30,29 30,11 235,97 30,21

Soccer Blue 30 R3 30,28 30,27 262,77 30,21 R5 30,27 30,29 259,22 30,21

Dancer01 30 R3 30,25 30,30 271,14 30,21 R5 30,27 30,19 269,02 30,21

Acrobat Duo 30 R3 30,30 30,22 226,22 30,17 R5 30,35 30,23 226,48 30,19

Table 3 – V-PCC Evaluation Results

Stream FPS Rates

Average Decoder
FPS

Average Renderer
FPS

Rates
Average Decoder

FPS
Average Renderer

FPS

G5 S8 G5 S8 G5 S8 G5 S8

Dance 15 Low 15,20 15,13 205,44 30,21 High 15,20 15,17 206,18 29,99

Soccer 30 Low 30,49 28,46 178,60 28,41 High 30,34 29,22 179,67 28,88

Mannequin 25 Low 25,33 25,31 140,78 30,03 High 25,34 25,33 151,59 30,19

Barn 30 Low 30,53 27,59 98,74 27,87 High 30,55 22,13 109,82 30,11

Table 4 – MIV Evaluation Results

On the Windows G5 platform, all streams are decoded and rendered above the targeted

FPS. On the Android S8 platform, all V-PCC and most of MIV content are also decoded and

rendered to the target FPS. Some MIV content (bolded in Error! Reference source not

found. Error! Reference source not found.) show signs of limitations with real-time

decoding. This is linked to streams complexity (see Table 2) and better results might be

obtained by optimizing associated decoders. The screen / rendering synchronicity explains

the renderer FPS homogeneity across content on Android.

Our platform can decode V3C content in real time on both Windows and Android. This

implementation proves that V3C decoding is production ready on high-end Android devices

[20]. Thanks to the natural evolution of hardware, it is reasonable to assume that most

devices will be able to decode V3C content in the near future.

CONCLUSION

The paper presents the first implementation of the MPEG-I V3C standards in one plug-in

and one application, providing implementation insights for the industry. The proposed

architecture shows the path to an integration of MPEG-I standards into the XR ecosystem

with off-the shelves platforms such as the Unity framework.

The use of open standards like MPEG, demonstrates the ability to deploy such content and

experience at large scale. Moreover, leveraging the compression efficiency of MPEG video

codecs, the proposed solutions demonstrate viable use cases for volumetric assets and

scenes. Evolution from HEVC codec to VVC codec will allow stronger compression

efficiency. Integration of V3C into a future version of the scene description standard will

enable global scene compositing and more complex environment distribution. Integration of

live encoding will open the path toward live teleconferencing and telepresence.

ACKNOWLEDGEMENTS

We thank Jacques Peyrache and Philippe Souchet from XD productions for content

courtesy.

REFERENCES

[1] ISO/IEC 23090-5, Information technology — Coded Representation of

Immersive Media — Part 5: Visual Volumetric Video-based Coding (V3C) and

Video-based Point Cloud Compression (V-PCC)

[2] ISO/IEC 23090-12, Information technology — Coded Representation of

Immersive Media — Part 12: MPEG immersive video

[3] ISO/IEC 23090-10, Information technology — Coded representation of

immersive media — Part 10: Carriage of visual volumetric video-based coding

data

[4] ISO/IEC 23090-14, Information technology — Coded representation of

immersive media — Part 14: Scene description

[5] ISO/IEC JTC1/SC29 WG11, Online, April 2021, MDS20352, V-PCC codec

description

[6] International Organization for Standardization/International Electrotechnical

Commission (ISO/IEC) JTC1/SC29 WG11, “Use Cases for Point Cloud

Compression,” Genova, Switzerland, w16331, Jun. 2016

[7] International Organization for Standardization/International Electrotechnical

Commission (ISO/IEC) JTC1/SC29 WG11, “Common Test Conditions for

PCC,” Alpbach, Austria, w19324, Apr. 2020

[8] SMPTE, C. Guede, P. Andrivon, J. -E. Marvie, J. Ricard, B. Redmann and J. -

C. Chevet, "V-PCC Performance Evaluation of the First MPEG Point Codec,"

in SMPTE Motion Imaging Journal, vol. 130, no. 4, pp. 36-52, May 2021, doi:

10.5594/JMI.2021.3067962, https://ieeexplore.ieee.org/document/9424091

[9] Test Model for Category 2 (TMC2) release 22.0 for MPEG V-PCC, MPEG 142,

April 2023,

https://dms.mpeg.expert/doc_end_user/documents/142_Antalya/wg11/MDS22

732_WG07_N00572.zip

[10] Test Model Version 14 for MPEG Immersive Video, MPEG 139, July 2022,

https://dms.mpeg.expert/doc_end_user/documents/139_OnLine/wg11/MDS21

853_WG04_N00242.zip

[11] FFmpeg, https://ffmpeg.org/, v5.1.1

[12] NVidia Video Codec SDK, https://developer.nvidia.com/video-codec-sdk

[13] Android MediaCodec,

https://developer.android.com/reference/android/media/MediaCodec

[14] OpenVVC, real-time software decoder developed by INSA/IETR,

https://github.com/OpenVVC/OpenVVC

[15] OpenVVC, FFmpeg fork with OpenVVC lib support developed by INSA/IETR,

https://github.com/OpenVVC/FFmpeg

https://ieeexplore.ieee.org/document/9424091
https://ieeexplore.ieee.org/document/9424091
https://dms.mpeg.expert/doc_end_user/documents/142_Antalya/wg11/MDS22732_WG07_N00572.zip
https://dms.mpeg.expert/doc_end_user/documents/142_Antalya/wg11/MDS22732_WG07_N00572.zip
https://dms.mpeg.expert/doc_end_user/documents/139_OnLine/wg11/MDS21853_WG04_N00242.zip
https://dms.mpeg.expert/doc_end_user/documents/139_OnLine/wg11/MDS21853_WG04_N00242.zip
https://ffmpeg.org/
https://developer.nvidia.com/video-codec-sdk
https://developer.android.com/reference/android/media/MediaCodec
https://github.com/OpenVVC/OpenVVC
https://github.com/OpenVVC/FFmpeg

[16] International Organization for Standardization/International Electrotechnical

Commission (ISO/IEC) JTC1/SC29 WG11, Call for proposals for point cloud

compression v2, N16763, 2017

[17] Bart Kroon, MIV Tutorial, IEE VCIP 2021. PowerPoint Presentation (mpeg-

miv.org)

[18] J. M. Boyce et al., "MPEG Immersive Video Coding Standard," in Proceedings

of the IEEE, vol. 109, no. 9, pp. 1521-1536, Sept. 2021, doi:

10.1109/JPROC.2021.3062590.

[19] XD productions (https://www.xdprod.com/).

[20] MPEG Immersive Video website MPEG Immersive video (MIV) – Specification

for streaming & storage of immersive content (mpeg-miv.org)

[21] Unity v2020.3.22f1 (https://unity.com/)

https://mpeg-miv.org/wp-content/uploads/2021/12/1-MIV-tutorial-part-1.pdf
https://mpeg-miv.org/wp-content/uploads/2021/12/1-MIV-tutorial-part-1.pdf
https://www.xdprod.com/
https://mpeg-miv.org/
https://mpeg-miv.org/
https://unity.com/

