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ABSTRACT 

This paper presents a real-time implementation of a platform jointly 

developed by InterDigital and Philips that showcases use cases leveraging 

the MPEG volumetric (MPEG-I V3C) and 2D video standards (VVC, HEVC). 

We will detail how our platform enables interoperability within existing and 

emerging extended reality (XR) ecosystems, including the acquisition, 

streaming, and real-time interactive playback of volumetric video on current 

and future client devices, for use in applications like telelearning, free-

viewpoint sport replays, and 3D telepresence in connected ecosystems like 

the metaverse. 

MPEG’s Visual Volumetric Video-based Coding (V3C) standard is an 

extensive framework for the coding of volumetric video, from dynamic point 

clouds (V-PCC) to multi-view plus depth and multi-plane image 

representations (MIV), to offer a single bitstream structure with a uniform 

bridge to systems-level standards. The V3C carriage standard defines how 

volumetric content can be stored, transported, and delivered to the end-

user, and it repurposes existing 2D video hardware decoding capabilities 

and GPUs to decode and render volumetric video. 

INTRODUCTION 

The increasing popularity of XR applications is driving the media industry to explore the 

creation and delivery of new immersive experiences, while pushing engineers and inventors 

to address the challenges of real video content manipulation. 

A volumetric video is comprised of a sequence of frames, and each frame is a static 3D 

representation of a real-world object or scene capture at a different point in time. Volumetric 

video is bandwidth-heavy content that can be presented as dynamic point clouds, multi-view 

plus depth, or multi-plane image representations. These high bandwidth constraints can be 

reduced through dedicated compression schemes adapted to these types of contents to 

reach data rates and files sizes that are economically viable in the industry. Standards play 

a crucial role in ensuring interoperability across these different types of contents and 

experiences, and this paper presents the Moving Picture Experts Group (MPEG) Visual 

Volumetric Video-based Coding (V3C) standard [1] as an open standard solution for efficient 

compression and streaming of volumetric video. The MPEG community has described use 

cases for the V3C codec [6] [17]. 



           

 

Looking at trends towards metaverse developments, some could consider a transitioning 

path from current 2D experiences to future metaverse worlds. The presented platform has 

been developed as such to allow a remote user to access 2D content first and then further 

engage with the proposed topic with volumetric viewing; allowing the enriched experience 

to be brought seamlessly to the user.  

This paper presents a real-time implementation of a platform jointly developed by InterDigital 

and Philips. This platform, illustrated in Figure 1Figure 1, ingests pre-recorded 2D and 

volumetric video content, provides real-time streaming and rendering. Final content is 

proposed to the user on various devices such as 2D screens, smartphones or tablets, and 

VR/AR head mounted displays. 

 

Figure 1 – Immersive Video Decoder Platform - end-to-end view 

The organization of the paper is as follows: the standards section will give an overview of 

the two implemented V3C-based volumetric codecs, namely V-PCC and MIV; along with the 

V3C carriage layer for systems. The platform architecture section will depict presented 

Immersive Video Decoder Platform and will highlight principal software components allowing 

real-time streaming and rendering and proposed integration into XR ecosystem. The 

evaluation section will provide metrics of the current implementation measured on laptop, 

smartphones, and tablet devices.  

V3C STANDARDS 

MPEG has developed two standards that adopt a similar video-based coding approach 

leveraging traditional 2D codecs (such as HEVC and VVC) but are targeting different 

volumetric representations and applications, dynamic point clouds and multi-view videos. 

The common aspects including bitstream structure have been regrouped into the Visual 

volumetric video-based coding (V3C) standard [1]. To enable storage and delivery of such 

compressed volumetric content, MPEG has developed Carriage of V3C data [3], and to 

composite multiple assets into a single scene, Scene Description [4] was created. 

Visual Volumetric Video-based Coding (V3C) 

V3C [1] maps volumetric data onto one or more flat video frames composed of image 

patches that can be compressed using any legacy 2D video codec (see Figure 2).  

The bitstream structure consists of a sequence of V3C units. The first one is a V3C 

parameter set (VPS) that provides sufficient information for a decoder to determine if it can 

handle the bitstream. The remaining V3C units carry atlas and video sub-bitstreams.  



           

 

Mapping onto flat video frames allows for an efficient decoder/renderer model whereby most 

of the decoding is offloaded to hardware video decoders and rendering is performed on a 

GPU. Because the atlases may have multiple video components, decoding a V3C bitstream 

may require many video decoder instantiations.  

 

Figure 2 – V3C codec model 

Video-based Point Cloud Coding (V-PCC) 

V-PCC [1], Annex H handles the dynamic category of Point Clouds identified by the MPEG 

community, which corresponds to dense point cloud datasets varying in time for applications 

that have been identified in [16].  

The next section provides details on the different encoding and decoding steps shown in 

Figure 2. Focus on the lossy mode random access configuration is done in the following 

document even if V-PCC can encode losslessly. Further details on different coding tools and 

strategy are given in [5]. 

First, during the atlas generation step, each point cloud frame is projected onto a given 

number of 2D planes using a cube of orthographic projections by regrouping points into 

connected components sharing neighbourhood with similar normal. These projections are 

called patches. Then, patches are arranged into 2D video frames, composed of a trio of 

component video frames: a 2D geometry frame, that stores the depth values for all 

connected components, a 2D attribute frame, that stores the corresponding attributes 

components (e.g., the colour), and a 2D occupancy frame, that indicates which part of the 

2D atlas is valid for the 3D reconstruction. The occupancy frame is lossless encoded and 

subsampled to avoid a high cost in coding. These steps can be done several times as 

several points may be projected to the same 2D pixel, and several maps could be generated. 

In addition, from the atlas generation, associated data are generated to define how to get 

back to the 3D volumetric frame using 2D representations. They are known as atlas data 

and represent a relatively small amount of data compared to video sequences. Atlas data 

also specify encoding tools (see [5]) that are used during the reconstruction to improve the 

quality of the point cloud.  



           

 

A performance analysis done in the SMPTE Motion Imaging Journal [8] provides a 

comparative study on the combination of different V-PCC tools and gives conclusions in 

terms of objective and subjective tests while comparing different profiles. 

By mirroring effect, the V-PCC decoder is a set of three 2D video decoders. These three 

video components, plus a light parsing of metadata allows the reconstruction of the 

volumetric data using reconstruction tools defined at the encoder side to improve the point 

cloud quality. At the end, a set of 3D points to be rendered on the targeted devices is 

obtained. 

MPEG Immersive Video (MIV) 

MIV [2] [18] is a set of extensions and profile restrictions on V3C. It supports three image-

based volumetric video representations: 

• Multi-view + depth (MVD) with texture and geometry video 

• Multi-view with only texture video and decoder-side depth estimation 

• Multi-planar images (MPI) with texture and transparency video 

The main addition that MIV brings to V3C is the transmission of view parameters via V3C 

common atlas data (Figure 2) comprising camera intrinsics, camera extrinsics, projection 

type and depth quantization parameters. By transmitting (patches of) multiple cameras it is 

possible to preserve view-dependent appearance of objects. It also allows for low complexity 

real-time encoding by postponing part of the 6DoF scene understanding to the client side. 

Other extensions are the ability to embed occupancy information in the geometry video, and 

to associate an entity ID to each patch, thus allowing for object-based coding. 

Because MIV is based on one or more views, whether captured from physical cameras or 

rendered on the encoder side, it is not generally possible to render the volume for any angle 

because there may be missing data. It would require having cameras all around the scene 

which is not always feasible or useful. The viewing space that is implicitly known and 

optionally transmitted indicates for which positions and viewing directions a reasonable 

rendering quality is to be expected. A client may use this information to adjust the rendering 

or redirect the viewer. 

Carriage of V3C Data  

The system layer of the V3C standard is defined in the Carriage of V3C Data standard [3], 

which specifies how the V3C data may be carried for different applications.  

The carriage standard translates the V3C units in a V3C bitstream to boxes in an ISO base 

media file format (ISO BMFF) container. This enables existing systems-level standards such 

as the MPEG-4 file format, which is derived from ISOBMFF, and MPEG dynamic adaptive 

streaming (DASH) to handle V3C data. The standard introduces three modes for storing 

V3C-coded content in ISOBMFF: single-track storage, multi-track storage, and non-timed 

storage. The multi-track encapsulation mode stores the V3C bitstream in the ISOBMFF file 

in several tracks, where each track represents either part of, or a complete V3C component. 

This is the preferred mode for streaming applications since independent encoders can run 

in parallel and the resulting bitstreams can be stored into an ISOBMFF-compliant file, or set 

of files, as separate tracks. This provides a flexibility where the extraction and direct 



           

 

processing of each V3C component by their respective decoder becomes much easier 

without the need to reconstruct the V3C bitstream. The V3C carriage standard also defines 

how to signal V3C content in the Media Presentation Description (MPD) for DASH-based 

delivery for both the single-track and multi-track encapsulation modes. This includes defining 

V3C-specific DASH descriptors as well as restrictions on the DASH segments generated for 

the V3C content. As with encapsulation, the multi-track mode provides more flexibility by 

enabling adaptation across several dimensions as each V3C component is represented by 

its own Adaptation Set. A streaming client can then prioritize or completely drop some 

components or maps when making adaptation decisions. V3C video component 

representations can be encoded using different video codecs or different bitrates to allow 

for efficient adaptive bitrate streaming. 

IMMERSIVE VIDEO DECODER PLATFORM ARCHITECTURE 

The objective of the Immersive Video Decoder Platform (Figure 3) is to enable real-time 

rendering of 2D and volumetric V3C video content to allow smooth integration of these 

technologies into XR applications. A streaming server processes 2D and V3C bitstreams 

into DASH segments which can then be streamed to multiple video clients over Internet 

networks. On the client side, the Immersive Video Decoder Platform receives DASH 

segments via the DASH client and passes data chunks to the decoder which is connected 

to a host application interfacing with the end-user.  

 

Figure 3 – Immersive Video Decoder Platform global architecture 

Details of the Immersive Video Decoder Platform implementation are presented below, 

where focus is put on V-PCC and MIV content but 2D content will follow the same 

architecture path. 

Native Decoder Plugin 

The native decoder plugin (C++, OpenGL) manages both the decoding and rendering of a 

V3C bitstream. It implements the Unity native render plugin API to leverage the engine 

cross-platform capabilities and the numerous XR devices supported. It is composed of 5 

main stages: a data interface stage, a demultiplexing stage, a decoding stage, a scheduling 

stage, and a synthesizing stage, as shown in Figure 4. 

For the data stage, the bitstream data is fetched either remotely using DASH or locally and 

split into timestamped chunks delivered to the next stage. The demultiplexing stage uses 

the parsing tools provided with the relevant test models (either Test Model for Category 2 

R22.0 [9] or Test Model for MPEG Immersive Video 14 [10]) to extract the video bitstreams 

and atlas data from the V3C bitstream units.  



           

 

 

Figure 4 – Native decoder plugin High Level Architecture 

V3C contents use multiple video streams, and the number of videos to be decoded varies. 

This stage is responsible for starting the right number of decoders: 1 video decoder for 2D 

content, 3 for V-PCC, 2 for MIV MVD or MIV MPI, 3 for MIV MVD+T; and providing them 

with data. The atlas data skips the decoding stage and is directly sent to the scheduler. 

For the decoding stage, video decoders relying on the FFMPEG media framework [11] and 

[15] are used, which provides either a hardware accelerated HEVC decoder implementation 

(Nvidia NVDEC for Windows [12] and MediaCodec for Android [13]) or a software 

implementation of the VVC decoder (OpenVVC developed by INSA/IETR [14]). 

To each decoder, an array of OpenGL textures to be used as output buffer is associated. 

For hardware decoding, a direct GPU copy to speed up the processing is used. Once 

decoded, the atlases are queued toward the scheduler. 

The scheduling stage waits for the atlas data and video frames needed to synthesize one 

frame of the content, packetize this data and waits until the frame timestamp is reached. 

The data is then transferred to the relevant synthesizer. 

Regarding the synthesizing stage, the host is responsible for issuing the rendering command 

each time it wishes to render the content. It also provides the color and depth textures used 

as render target for the synthesizers at initialization, as well as camera and viewport 

information at each frame. The synthesizer then fetches the last decoded data packet and 

renders the content, decoupling the decoding and rendering frame rates. Using shared color 

and depth textures enables merging V3C content with a full 3D scene managed by the host 

application. 

Unity Host Application 

The host application manages user input, camera movement and full scene rendering. A 

simplified architecture of a basic Unity implementation [21] is presented in Figure 5. This 

implementation uses a two-camera setup: a render camera and a UI camera. The render 

camera draws all the 3D elements of the Unity scene into the shared colour and depth 

textures. The plugin then uses the camera information to render the content into the same 

textures. Finally, the colour buffer is rendered directly on a UI image. The second camera, 

set to render only the UI, produces the final render.  

 



           

 

 

Figure 5 - High Level Unity Implementation Architecture 

Architecture advantages 

As shown in this section, the main implementation modules of our Immersive Video Decoder 

Platform are DASH streaming, dynamic video decoder(s) usage, hardware HEVC decoding 

with direct GPU copy, native OpenGL rendering into the synthetiser, software VVC 

decoding. The split architecture based on a native plugin implementation enables to reach 

high performance and cover multiple hosts: the plugin already supports native C++ and Unity 

based application and could easily be adapted to other hosts such as Unreal Engine. Finally, 

management of 2D video content is directly supported thanks to the video-based nature of 

the V3C codecs.  

EVALUATION 

The Immersive Video Decoder Platform evaluation was performed on Windows and Android. 

With Windows 11 on Dell G5 Laptop (G5) with Intel Core i7 2.60GHz and NVidia GeForce 

RTX 2060. With Android 13 on Samsung Tab S8 Ultra (S8) with Qualcomm SM8450 and 

Qualcomm Adreno 730.  

The next sections describe generation of V-PCC and MIV content that feeds the Platform 

and results of the evaluation for each technology are given. 

V-PCC Content Generation 

For V-PCC, five input content items (Soccer Blue, Soccer Red, Dancer01, Acrobat01, 

Acrobat Duo) have been delivered by the XD productions company, a service provider 

company specialized in videogrammetry techniques [19]. Content screenshots are provided 

in Figure 6. The capture setup is composed of about sixty 4K cameras, arranged in 

hemispheres around the scene to be captured. The set is 15-meter in diameter for a 7-meter 

diameter capture area. Two types of lenses are simultaneously used, with variable focal 

lengths, which allows to adapt the size of the capture area, and to mix wide shots and close-

ups on the same captures to improve the quality of the textures. Each content item has then 

been converted into point cloud frames contained in a 1024-sized bounding box with integer, 

positive coordinates. 

Each content item is encoded using the Test Model for Category 2 based on the release 

R22.0 [9], at both R3 (QP geometry=24, QP Attribute=32, Occupancy precision=4) and R5 

(QP geometry=16, QP Attribute=22, Occupancy precision=2) rates, as defined in CTC [7] 

using the profile HEVC Main10 V-PCC Basic Rec0.   



           

 

 

Figure 6 – XD Productions contents screenshots, from top right to left: Acrobat01, Soccer 
Blue, Soccer Red, Dancer01, Acrobat Duo 

When decoding 10-bit content on Android, a rescaling of the MediaCodec decoded video 

frame is done, in turn corrupting the 3D reconstruction. No issues were detected on 

Windows, nor using 8-bit content on Android. For easier cross platform comparison, the 8-

bit content on both platforms has been chosen. The frame size of the encoded videos has 

been locked at 1492×1600 (1492x1920 for Acrobat01) on the encoder side to avoid dynamic 

updates of the frame size during the decoding process. The encoding was done with a single 

map in each atlas to limit the number of hardware HEVC decoders to 3, reducing the point 

count for multi-layer content. 

V-PCC Content 

Name 
FPS 

Input average 

point count/frame 

Input 

bitrate 

(Mbps) 

Rates 

Output 

average point 

count/frame 

Average 

point count 

ratio 

Output bitrate 

(Mbps) 

Compression 

ratio 

Soccer Red 25 1065014 1371,16 R3 542 214 0,51 4,74 289 

        R5 505 816 0,47 15,81 87 

Acrobat01 30 824 905 1062,03 R3 840 691 1,02 4,42 240 

        R5 811 090 0,98 20,86 51 

Soccer Blue 30 274 665 353,62 R3 280 094 1,02 3,77 94 

        R5 264 958 0,96 13,76 26 

Dancer01 30 311 351 400,85 R3 137 204 0,44 1,67 240 

        R5 127 989 0,41 6,68 60 

Acrobat Duo 30 786 132 1012,11 R3 802 133 1,02 6,02 168 

        R5 765 915 0,97 26,45 38 

Table 1 – V-PCC Test Model for Category 2 release 22.0 rates. 

Table 1 provides a summary of key characteristics of the input content and the encoding result. 



           

 

Uncompressed bitrates are computed considering a 10-bit geometry and 8-bit per-channel 

colour coding. Point counts ratios around 0.5 correspond to a single map being encoded for 

a multi-map input and to encoder choices during the atlas generation phase. Variations in 

output point number for the same stream at different rates is caused by the different 

Occupancy Precision used. 

MIV Content Generation 

MIV performances were evaluated using four self-captured content items: 

• Dance: shot with 6 Azure Kinect cameras at FHD resolution, placed in a linear array 

spaced at an approximate 12 cm baseline, hardware synchronized and captured at 

a rate of 15 fps. The depth-maps, available from the Kinect were ignored. 

• Soccer: shot with 8 uEye UI-3080 CMOS cameras at FHD resolution, spaced at an 

approximate 25 cm baseline, hardware synchronized and captured at a rate of 30 fps. 

• Mannequin: Computer-Generated Images (CGI) content, recorded at 25 fps in Unity 

using 15 FHD virtual cameras. 

• Barn: shot with 15 Blackmagic Micro Studio cameras at 4K resolution, synchronized 

using Genlock sync, captured at a rate of 30 fps and spaced at 29 cm baseline. Rigs 

used for Barn and Mannequin allows horizontal and vertical parallax. 

Content screenshots are shown in Figure 7 for Dance and Soccer and in Error! Reference 

source not found. for Mannequin and Barn. 

   

Figure 7 – Philips Content screenshots: Soccer, Dance 

   

Figure 8 – Interdigital Content screenshots: Mannequin, Barn 



           

 

Soccer and Dance recordings were prepared for encoding into MIV bitstreams using the 

MIV Extended MVD+T profile, with texture, geometry, and transparency atlases. The 

encoding performs the following steps: undistortion, camera extrinsic estimation, multiview 

depth estimation and segmentation. Internally developed tools were used for the last two 

steps to separately handle the (static) background and the (dynamic) foreground objects. 

The result of the object segmentation is a second output of this step and is used in the MIV 

encoding. The Dance content used an atlas frame size of 4096×2824 pixels, while the 

Soccer content used an atlas size of 4096×3272 pixels.  

Mannequin and Barn recordings were encoded using the MIV Extended MPI profile, which 

uses texture and transparency atlases. Barn content is challenging due to complex scene 

capture and real-time depth estimation tool used, generating lots of noise in the depth maps. 

It has been selected as high bit rate reference to evaluate the performance of the MIV MPI 

processing. All atlases were encoded into HEVC bitstreams using a 32 frame inter-period 

and two bitrate profiles were used. Table 2 lists the contents key statistics. For the input 

bitrate, the input resolution times the number of cameras was used, taking 25 bits per pixel 

(10 for luminance, 5 for chrominance and 10 for depth). The input considered are a texture 

(yuv 4:2:0 10-bit LE) and a depth (yuv 4:2:0 16-bit LE) video streams. Both contents used 

an atlas frame size of 4096×4096 pixels. 

For each content, a low rate and a high-rate encodings are generated with selected QPs for 

texture, geometry (if applicable) and transparency atlases. 

MIV Content 

name 
Profile FPS 

Input Resolution 

(HxWxN) 

Encoder 

input 

bitrate 

(Mbps) 

Rates 
QPs 

[Text;Geom;Transp] 

Encoder 

output 

bitrate 

(Mbps) 

Compression 

ratio 

Dance 

MVD+T 

Extended 

profile 

15 1920*1080*6 4449 

Low [35; 35; 35] 5,89 756 

High [25; 25; 25] 15,98 278 

Soccer 

MVD+T 

Extended 

profile 

30 1920*1080*8 11865 

Low [35; 35; 35] 12,55 946 

High [25; 25; 25] 36,51 325 

Mannequin 
MPI  

Extended 
profile 

25 1920*1080*15 35596 
Low [43; na; 27] 11 3236 

High [39; na; 18] 15 2373 

Barn 
MPI  

Extended 
profile 

30 1920*1080*15 42715 
Low [32; na; 44] 202 211 

High [24; na; 44] 339 126 

Table 2 – MIV Encoding Performances 

Test Results 

Each content is read locally and split into data chunks containing at most 32 frames and fed 

synchronously with the target frame rate (i.e., a chunk every 1.0666s for 30 FPS or every 

1.28s for 25 FPS, …). It plays for 1 minute starting at the first decoded frame while looping 

if needed. 

The rendering frame rate and the decoder frame rate were measured. The decoded frame 

rate is set as the rate at which a full set of decoded frames plus the corresponding atlas data 

is received, before scheduling. This explains why the decoder frame rate may exceed that 

of the input content. These two measures are needed as both stages are not synchronised 



           

 

in our implementation. Test on Windows are realized without V-sync to render as fast as 

possible. On Android, the rendering is synchronized with the screen refresh rate by default 

(120 Hz). The results are presented in Table 3 and Table 4 for V-PCC and MIV respectively. 

Stream FPS Rates 
Average Decoder FPS  Average Renderer FPS  

Rates 
Average Decoder FPS  Average Renderer FPS  

G5 S8 G5 S8 G5 S8 G5 S8 

Soccer Red 25 R3 25,35 25,17 292,94 30,20 R5 25,21 25,21 280,85 30,21 

Acrobat01 30 R3 30,25 30,30 239,64 30,17 R5 30,29 30,11 235,97 30,21 

Soccer Blue 30 R3 30,28 30,27 262,77 30,21 R5 30,27 30,29 259,22 30,21 

Dancer01 30 R3 30,25 30,30 271,14 30,21 R5 30,27 30,19 269,02 30,21 

Acrobat Duo 30 R3 30,30 30,22 226,22 30,17 R5 30,35 30,23 226,48 30,19 

Table 3 – V-PCC Evaluation Results 

Stream FPS Rates 

Average Decoder 
FPS  

Average Renderer 
FPS  

Rates 
Average Decoder 

FPS  
Average Renderer 

FPS  

G5 S8 G5 S8  G5 S8 G5 S8 

Dance 15 Low 15,20 15,13 205,44 30,21 High 15,20 15,17 206,18 29,99 

Soccer 30 Low 30,49 28,46 178,60 28,41 High 30,34 29,22 179,67 28,88 

Mannequin 25 Low 25,33 25,31 140,78 30,03 High 25,34 25,33 151,59 30,19 

Barn 30 Low 30,53 27,59 98,74 27,87 High 30,55 22,13 109,82 30,11 

Table 4 – MIV Evaluation Results 

On the Windows G5 platform, all streams are decoded and rendered above the targeted 

FPS. On the Android S8 platform, all V-PCC and most of MIV content are also decoded and 

rendered to the target FPS. Some MIV content (bolded in Error! Reference source not 

found. Error! Reference source not found.) show signs of limitations with real-time 

decoding. This is linked to streams complexity (see Table 2) and better results might be 

obtained by optimizing associated decoders. The screen / rendering synchronicity explains 

the renderer FPS homogeneity across content on Android.  

Our platform can decode V3C content in real time on both Windows and Android. This 

implementation proves that V3C decoding is production ready on high-end Android devices 

[20]. Thanks to the natural evolution of hardware, it is reasonable to assume that most 

devices will be able to decode V3C content in the near future. 

CONCLUSION 

The paper presents the first implementation of the MPEG-I V3C standards in one plug-in 

and one application, providing implementation insights for the industry. The proposed 

architecture shows the path to an integration of MPEG-I standards into the XR ecosystem 

with off-the shelves platforms such as the Unity framework.  

The use of open standards like MPEG, demonstrates the ability to deploy such content and 

experience at large scale. Moreover, leveraging the compression efficiency of MPEG video 

codecs, the proposed solutions demonstrate viable use cases for volumetric assets and 

scenes. Evolution from HEVC codec to VVC codec will allow stronger compression 



           

 

efficiency. Integration of V3C into a future version of the scene description standard will 

enable global scene compositing and more complex environment distribution. Integration of 

live encoding will open the path toward live teleconferencing and telepresence.  
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