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ABSTRACT 

High production costs have been a key factor in delaying a widespread 
deployment of UHD broadcast offerings. Only a few special events tend to 
be produced and broadcast on UHD, with most of the true 4K content 
coming from streaming providers such as Netflix, Amazon Video or 
Disney+, and even on those cases, content availability is still significantly 
more limited than for their non-4K assets. As a result, the potential of UHD 
displays is not fully exploited, with the final picture representation relying 
on the viewing device upscale capabilities, usually highly constrained by 
computational and power consumption limitations. 

High-quality and reliable up-conversion can present a viable solution to 
accelerate UHD availability, allowing content providers to significantly 
reduce costs by complementing their offerings with high-quality content 
upscaled from existing HD libraries and leverage on their current 
production pipelines all the way up to the final up-conversion stage, while 
retaining control over how content is rendered on UHD screens. Widely 
investigated deep learning-based methods are perfect candidates for such 
applications, greatly outperforming traditional techniques and being 
particularly well suited for cloud deployments, where GPU acceleration 
can help providing high-throughput inference. 

This paper provides a comprehensive overview of state-of-the-art deep 
learning-based super-resolution methods and their respective advantages 
and drawbacks, focusing on how they can be tailored for practical 
deployments in the cloud to mitigate their typical limitations.  

 

INTRODUCTION 

Super-resolution (SR) methods [1] refer to the process of generating high-resolution 
images or videos from low-resolution inputs. Such techniques have been an important 
topic of research for several decades, with early SR methods relying on spatial 
interpolation techniques [2,3]. While those methods were simple and effective, the quality 
of the upscaled images was constrained by their inability to generate high frequency 
details. Some progress was made over the years with the introduction of more complex 
approaches, including statistical, prediction-based, patch-based, or edge-based methods 
[4-16]. The most significant advances were however delivered by emerging deep learning 
techniques [17,18] and particularly convolutional neural networks (CNNs). Although 
Convolutional Neural Networks (CNNs) have been around since the 1980s, it wasn't until 
the mid-1990s that they started to gain widespread attention in the research community 



           

 

[20], mainly due to the lack of hardware suited to train and run sizeable networks. CNNs 
have since undergone numerous improvements and became one of the most powerful and 
widely used deep learning techniques for image analysis and processing tasks. In recent 
years, CNNs have achieved state-of-the-art performance in tasks ranging from image 
classification [21,22], object detection [23], or semantic segmentation [24], among many 
others [25]. 

The first convolutional neural network (CNN) based super-resolution method is generally 
attributed to Dong et al., who proposed the "SRCNN" (Super-Resolution Convolutional 
Neural Network) in their 2015 paper “Image super-resolution using deep convolutional 
networks” [26]. The authors developed a three-layer CNN architecture able to learn the 
mapping from low-resolution to high-resolution images by using a large training dataset. 
Numerous CNN-based super-resolution methods followed, each improving in areas such 
as the data mapping, networks architecture and size, optimization function or 
computational efficiency, with many of those methods achieving state-of-the-art 
performance on various benchmark datasets over the years [27,31]. 

Another crucial development was delivered with the inception of Residual Networks [32]. In 
a traditional deep neural network, as the number of layers increases, gradients become 
weaker and weaker during the training process as they are propagated back through the 
network. Some of these gradients may vanish or explode, causing instability or stopping 
the learning process from converging. This made it increasingly challenging to train very 
deep networks. The ResNet architecture tackles the issue by introducing the concept of 
residual connections, where the output of some layer can bypass others to be directly 
added to the input of a subsequent layer. This allows the network to learn residual 
mappings rather than full mappings, making it possible to train significantly deeper 
networks that can often reach hundreds of layers. This made the ResNet architecture 
highly popular for many computer vision tasks, including super-resolution. 

Building up in those innovations and in the increase of hardware capabilities to train and 
run larger and more complex networks, the super-resolution field has been evolving very 
quickly over the past years. Advances in generative models such as Auto-Encoders and 
Generative Adversarial Networks (GANs) opened new possibilities, providing high-quality 
upscales that match the underlying distribution of high-resolution images even in cases 
where the input data is noisy or incomplete. New trends such as transformer models and 
diffusion are still pushing the boundaries of what can be achieved even further. 

However, each network architecture comes with its own advantages and drawbacks, so it 
becomes of great importance to tailor each solution to its target application, especially 
since the balance between computational complexity and performance is often the most 
important constraint in a practical system’s design. 

 

DEEP LEARNING SUPER-RESOLUTION METHODS 

While both the input and output of a Single Image Super-Resolution (SISR) algorithm are 
individual images, Video Super-Resolution (VSR) algorithms must generate multiple high-
resolution frames from multiple low-resolution frame inputs. A trivial approach for VSR is to 
apply a SISR algorithm to each of the input frames, but such approach usually introduces 
artifacts such as flickering or shimmering due to inconsistencies in the details generated 
for each output frame. VSR methods need to maintain temporal consistency to maximize 
perceptual quality, and this is typically achieved by using multiple frames of the low-
resolution input to generate each upscaled frame for the upscaled video. Feature 



           

 

alignment on input frames is commonly achieved by using motion compensation, optical 
flow, or other similar methods [33], resulting in algorithms computationally more complex 
than equivalent SISR algorithms. 

Despite this fundamental difference, SISR and VSR share similar network architectures, 
with algorithms still falling into the same classes. For this reason and for the sake of 
simplicity, we will focus on the analysis of SISR algorithm, but comparative results and 
relative merits and drawbacks of each class of algorithms can be extrapolated for VSR 
solutions. 

PSNR Oriented methods 

PSNR-oriented methods are trained with simple distribution assumption-based losses [26], 
being able to achieve excellent PSNR [34-37], but often resulting in smooth images with a 
lack of detail. During the training process, patches of high-resolution images are 
downscaled and used as input of a super-resolution generator network, which upscale 
them back to the original resolution. The original images are then used as the ground-
truth, so that a loss between the original and the upscaled patches can be calculated. The 
network coefficients are trained backpropagating the loss function gradients to minimize 
the error between the super-resolution upscales and the originals. 

 

Figure 1 - PSNR-based method approach 

The ill-nature of the problem means however that there are multiple solutions possible 
while mapping a low resolution into a high-resolution patch, and minimizing reconstruction 
losses tends to favour a prediction resulting from averaging all plausible HR solutions, 
leading to the significant reduction of high-frequency details 

 

Figure 2 - Ill-posed nature of the PSNR oriented optimization 



           

 

A synthetic example is presented in Figure 2, where the low-resolution input could be 
mapped in any of the 4 possible HR faces, which are all very similar and equally credible, 
and potentially presenting identical MSE, but which present slightly different features (as 
can be seen in the detail crops). Assuming the network is presented with the LR image 
and all of the 4 HR images are equally correct answers for the problem, the network will be 
tempted to produce an upscaled output resulting from the average of all the possible 
faces, as this would, in average, minimize the loss to the ground truth if all the 4 faces are 
randomly presented to the network. This results in a feature blending and a consequent 
smoothed-out reconstruction, which is not necessarily what we aim to achieve to maximize 
the perceptual quality of the up-sampled image. In a real application scenario, the original 
high-resolution image won’t even exist for comparison, so the generated detail just needs 
to look credible and consistent for the super-resolution image to be considered of high 
quality by viewers.  

Generative Adversarial Networks 

Generative Adversarial Networks (GANs) were originally proposed by Goodfellow in 2014 
[39] and later successfully used for super-resolution applications [39,40]. GANs try to 
address the over-smoothing problem of PSNR-based methods by replacing the simple 
loss function by a complementary CNN, trained to rank the credibility of the upscaled 
images. For that purpose, the discriminator is alternatingly presented with original ground-
truth and upscaled patches coming from the generator, learning to determine the likelihood 
of a given high-resolution patch being original or synthetic. 

 

Figure 3 - GAN based super-resolution 

By training both networks simultaneously, they thrive on each other’s success: while the 
discriminator gets better at distinguishing between original and synthetic high-resolution 
patches, the generator must become better at generating more credible high-resolution 
upscales to successfully trick the generator. Analogously, the better the generator 
becomes at creating synthetic high-resolution images, the more accurate the discriminator 
must become at distinguishing them from the ground truth high-resolution images. 

GANs provide a significant step up in the perceptual quality of the upscaled images, 
generating sharper pictures with richer high frequency details, but pose some additional 
challenges related to their design and training. First, they are intrinsically more 
computationally expensive to train and result in a larger memory footprint, given 2 NN 
must be trained concurrently. However, since the discriminator is not used during 
inference, this issue is mitigated in practical applications. Second, instead of optimizing the 
generator to minimize a well-defined metric (loss-function), the optimization function in a 
GAN is itself varying as the discriminator progressively learns. This make GANs prone to 



           

 

suffer from mode collapse, essentially a situation where the generator "collapses" to 
producing only a subset of the target distribution, rather than the full distribution.  

Several factors contribute to mode collapse, such as the discriminator being too powerful 
when compared to the generator or simply not accurate enough for the application. While 
in the first case, the generator gets trapped on local minima as it struggles to produce 
diverse samples that can fool the discriminator (this can also happen if the training data is 
too limited so that the generator fails to learn the data full distribution), on the second case, 
the generator fails to produce varied, high-quality outputs since the fact it can trick the 
discriminator to believe a patch is genuine every time means it has no incentive further 
improve or diversify its outputs. Mode collapse is also likely to occur if the learning rates 
for the 2 networks are not properly balanced and one of the networks converges much 
quicker than the other. 

Researchers have developed various techniques that complement careful training data 
selections [41] and learning rate tuning in reducing the likelihood of mode collapse. Those 
include modifying the loss function [40], tuning the architectures of both the generator and 
discriminator [42], and adding regularization terms to the model [43]. Figure shows an 
example were a weighted combination of a simple loss with a discriminator network helps 
providing the benefits of a GAN approach while mitigating some of the risks. 

 

Figure 4 - Gan with hybrid loss function 

The hybrid approach also helps controlling mode hallucination and avoid generating high 
resolution upscales that although convincing may not completely correlate to the input. It is 
not uncommon to observe histogram shifts in the upscaled images that impact objective 
metrics of upscales generated by GANs, being possible to reduce its likelihood with the 
addition of a simple loss term. A careful design and tuning of the network architecture and 
the addition of residual layers may also help mitigating the issue. 

Transformer Models 

Transformer models [44] are a type of neural network architecture originally developed for 
natural language processing (NLP) tasks but has since also been successfully applied to 
other types of sequence-based data, such as images [45], video [46] and audio signals 
[47]. The main building blocks of transformer models are self-attention mechanisms and 
multi-layer feedforward networks. 



           

 

In a typical transformer, the input data is first embedded into a sequence of vectors, which 
are then processed by a stack of identical layers. Each layer consists of two sub-layer 
types: a self-attention mechanism and a multi-layer feedforward network. The self-
attention mechanism allows the model to learn a global representation of the input 
sequence by attending to different parts of the sequence at different levels of granularity. 
At each position in the sequence, the self-attention mechanism calculates a weighted sum 
of the other positions in the sequence, where the weights are determined by a learned 
attention function. This weighted sum is then used to compute a new representation of the 
current position, which is passed to the next layer. The multi-layer feedforward network 
applies a non-linear transformation to the self-attention output at each position in the 
sequence, which helps the model to capture more complex relationships between different 
parts of the sequence. The output of the feedforward network goes then through a residual 
connection and a layer normalization operation before being passed to the next layer. After 
the input sequence has been processed by the stack of transformer layers, the final output 
goes through linear layers to generate the model's prediction for the task at hand.  

A few adjustments are applied to the transformer model to process image data. Typically, 
images are first processed by a convolutional neural network (CNN) to extract a set of 
feature maps that represent the low-level visual features. Feature maps are then split into 
non-overlapping patches, which are flattened and mapped to continuous vectors, which 
are then combined with learned positional embeddings to be processed by the multi-head 
self-attention mechanism. 

The learned embeddings and self-attention mechanism effectively map the image data into 
a latent space, and since the optimization is performed in that domain, transformers can 
mitigate some of the issues related to the ill-nature of the problem, meaning outputs are 
less likely to suffer from smoothness than for PSNR-methods. Since optimization relies in 
a single loss, transformer models do not suffer from mode collapse, being easier to 
converge than GANs. They tend however to be relatively large and require vast amounts 
of computation and memory to run. 

 

Figure 5 - Transformer domain mapping 

In [48], the authors proposed to adapt the popular Swin Transformer architecture [49] to be 
used in a generic video restoration algorithm named SwinIR. Swin is a variant of the 
transformer that uses hierarchical feature representation and shift windows to capture 
spatial information. Although SwinIR performed well on several image restoration tasks, it 
tends to generate smooth images that lack realism when using for super-resolution. 

In [50], the authors proposed to use a transformer with hierarchical patches and in [51], the 
authors proposed to use the SwinV2 [52] transformer, an updated version of the original 
Swin transformer that incorporates several innovations and improvements. Those include 
cross-window aggregation, allowing larger context modelling, residual connections in the 
normalization layer that improve stability during training, a multi-scale attention that 
aggregates features at multiple scales to capture both local and global information, layer-
wise scaling to balance the contribution of each layer to the final output and prevent 
gradient explosion or vanishing and the use of depth wise convolution in the stem layer to 
reduce the number of parameters and improve the speed of the inference process. 
Overall, this allowed Swin2R to generate more credible super-resolution images when 



           

 

compared with the original SwinIR, but overall, the algorithm still tends to suffer from some 
over-smoothing when compared to other techniques. 

Overall, successive improvements in the transformer architecture allowed those methods 
to achieve competitive results for super-resolution application, but at the cost of a relatively 
high training and inference costs.  

Flow Models 

While other approaches try to learn a deterministic mapping between the low and high-
resolution pairs, flow-based methods [53] directly account for the fact that any given low-
resolution image can effectively be mapped into infinite compatible high-resolution images, 
by aiming to instead capture the full distribution of natural high-resolution images 
conditioned to their corresponding low-resolution counterparts [54].  

An invertible NN that maps HR-LR image pair to a latent variable is used to parametrize 
the conditional distribution function, with the bijection between latents and data meaning 
any given high-resolution image can always be exactly reconstructed from the latent 
space. This allows to train the NN over a large dataset of high-resolution and low-
resolution pairs using a single negative log-likelihood loss. 

The use of a single loss allows Flow-based methods to avoid mode collapse and other 
training instabilities but results in extremely large footprints and high training costs due to 
the strong architectural constraints to keep the bijection between latents and data. 

Overall, flow model present some of the most balanced results between image sharpness, 
objective error metrics and level of perceived artifacts, but at the expense of complexity 
and memory requirements that may make them unsuitable for many applications. 

Diffusion Models 

Diffusion probabilistic models [54] are another type of generative models well suited to 
tackle problems with one-to-many solutions like super-resolution. They have then been 
successfully used for super-resolution [55,56], as well as other applications such as 
speech [57] and image synthesis [58].  

Diffusion probabilistic models rely on the use of a Markov chain to convert data x0 into a 
latent variable xT with a simple distribution (such as a Gaussian distribution), by gradually 
adding noise ɛ in a diffusion process, and then predict the noise ɛ in each diffusion step to 
recover the data x0 through a learned reverse process.  

There are then 2 stages in a diffusion model: a Forward Diffusion stage, where the image 
is corrupted by gradually introducing noise until it becomes complete random noise (left to 
right in Figure 6), and the reverse process, where a series of Markov Chains are used to 
recover the data from the Gaussian noise by gradually removing the predicted noise at 
each time step (right to left in Figure 6). 

 

Figure 6 - Diffusion process 



           

 

Super-resolution diffusion models use a low-resolution image as an input to condition the 
noise distribution and propagate information through a diffusion process to generate a 
high-resolution image or the high frequency detail to add to an upscaled image. In this 
process, the low-resolution image is transformed into a higher-dimensional space where it 
is easier to recover fine-grained details, using a learned function that maps the low-
resolution input to the higher-dimensional space. 

Once the input is in the higher-dimensional space, a diffusion process is applied to 
propagate information across the dimensions. This process can be thought of as a random 
walk, where each pixel in the low-resolution image corresponds to a particle that moves 
through the high-dimensional space, influenced by neighboring particles. As the particles 
move, they exchange information, allowing fine-grained details to be recovered. 

After the diffusion process is complete, the resulting high-resolution image is generated by 
mapping the particles back to the original image space. This is achieved using a learned 
function that maps the high-dimensional representation to the high-resolution output. 

Diffusion super-resolution models are typically trained using pairs of low- and high-
resolution images, with the goal of learning to accurately recover fine-grained details from 
the low-resolution input, through the use of a loss function that penalizes differences 
between the generated SR image and the ground truth HR image. By training the diffusion 
models by optimizing a variant of the variational lower bound, diffusion probabilistic models 
also avoid the mode collapse problems encountered by GANs. 

Diffusion models can achieve state-of-the-art results for super-resolution application by 
relying in smaller models that typically are cheaper to train when compared to flow or 
transformer models. However, their iterative nature means multiple inference passes are 
required to generate each output image, resulting in relatively high inference costs. This 
makes diffusion models especially suited for applications where memory resources are 
limited but inference time is not critical, but may prevent its applicability for applications 
where there are strong constraints in inference time. The iterative nature of Diffusion 
models also has the benefit of scalability, as it is possible to run less iterations and accept 
less quality when limited resources are available and increase the number of iterations to 
improve quality when resources become available.  

METHOD COMPARISON 

In order to compare the different super-resolutions architectures discussed in the previous 
section in terms of quality and computational complexity, the same set of images was 
upscaled using a representative method from each class of algorithms. We used the 
DIV2K dataset [27], a publicly available dataset with 900 high-resolution RGB images 
comprising a large diversity of contents. The DIV2K dataset is divided into a training 
subset with 800 images and a validation subset with 100 images, and since the training 
subset has been used by most authors to train their models, only the 100 validation 
images were used for the purpose of this evaluation. 

Although exceeding what is required for what can be assumed to be the most typical 
applications on video delivery (such as SD to HD or HD to 4K), we used an upscale factor 
of 4x in both the horizontal and vertical directions to emphasise the difference between the 
various methods and highlight their most typically introduced artifacts.  

The input LR images we generated by down-sampling each of the original HR images in 
the DIV2K validation set using a bicubic kernel [2]. Those LR images were then upscaled 
to SR images using each one of the methods in analysis, so that quality metrics between 



           

 

the original ground truth (HR) and the upscaled (SR) images could be calculated. Besides 
the widely used PSNR and SSIM [59], we also computed the LPIPS [60], a DL reference-
based image quality evaluation metric that computes the perceptual similarity between the 
ground truth and the SR images and is highly effective at assessing the amount of high 
frequency detail introduced by the upscaling process. To further evaluate the consistency 
and correlation between the SR and LR images, we also include the LR-PSNR [54] values, 
computed as the PSNR between the down-sampled SR image and the input LR image.  

A Bicubic upscaling interpolation [2] was used as the reference for this comparison, and 
RRDB [40] was adopted as the representative PSNR-oriented method. RRDB uses the 
same generator network used in ESRGAN, the method adopted to illustrate the 
performance of GAN methods. The only difference between both methods is that while the 
former is trained by using a simple L1 loss, the latter combines the simple loss with the 
result of a discriminator network to calculate an adversarial loss. This allows to directly 
evaluate the benefits of a GAN architecture by comparing head-to-head two identical NN-
trained with and without an adversarial network. Swin2R [51] was used to represent 
transformer methods, SRFlow [54] to illustrate the performance of flow-based models and 
SRDIFF [56] to represent diffusion super-resolution models, since to our knowledge, there 
is no complete open-source implementation of Google’s SR3 [55]. For all the methods, the 
default architecture proposed by the authors in their original papers was used, as well as 
the pre-trained models they provide. A Nvidia RTX3080Ti GPU with 12Gb of VRAM was 
used for inference, with the results are summarized in Table 1. 

Method PSNR ↑ SSIM ↑ LR-PSNR ↑ LPIPS ↓ Network 

parameters ↓ 

Memory 

Usage [Mb] ↓ 
Throughput ↑ 

Bicubic 26.693 0.766 38.697 0.421 - - - 

RRDB 29.475 0.844 53.737 0.262 16M 6213 2.1 fps 

ESRGAN 26.636 0.764 42.613 0.119 16M 6213 2.1 fps 

SRFLOW 27.109 0.756 52.066 0.124 40M 9895 0.8 fps 

SWIN2R 29.621 0.848 54.605 0.256 12M 7165 1 fps 

SRDIFF 27.125 0.785 49.617 0.132 13M 9101 3 it/s. 100 

iterations per 

image 
31s image 

Our 

model 
26.775 0.7687 50.844 0.127 1.6M 5689 6 fps 

Table 1 - Experimental results 

When comparing RRDB with the bicubic interpolation, it can be observed that every metric 
is consistently improved (higher is better for all metrics except LPIPS where lower is 
better), clearly demonstrating the superiority of DL-based methods over interpolation 
methods. SWIN2R provides another step up over RRDB by again improving all the 
measured quality metrics, at the expense of higher computational complexity. 

However, when analysing the LPIPS score in particular, it can be observed that although 
the RRDB and SWIN2R perform much better than the bicubic interpolation, they still fall 
considerably behind the remaining methods. This correlates directly with what can be 
observed on the example shown in Figure 7, with the images upscaled using those 2 



           

 

methods being noticeably softer than the ones upscaled using ESRGAN, SRFLOW and 
SRDIFF. 

ESRGAN achieves the best LPIPS of all methods in the comparison, suggesting its 
upscaled images are richer on high frequency details. This aligns once again with what 
can be observed in Figure 7, demonstrating the effectiveness of LPIPS to assess the 
quality of super-resolution algorithms and in particular the level of detail introduced in the 
upscaled images. The leading LPIPS achieved by ESRGAN comes however at the 
expense of some degradation in the other metrics when compared to other methods, 
particularly when looking at the LR-PSNR. Hallucinated details often do not consistently 
match those in the ground-truth image, but this may not be a significant problem in real 
world application if the detail is visually credible, considering the viewers won’t have 
access to the ground truth.   

Both SRFLOW and SRDIFF achieve comparable results, with a good balance between 
metrics and perceived sharpness.  

 

Figure 7 - Detail from image #830 from the DIV2K dataset 

In the last row of Table 1, we present the results for our proprietary method, that has been 
developed inhouse. It uses a GAN architecture but with several tweaks and improvements 
over other proposals in the literature, including ESRGAN. Improvements allowed to 
significantly reduce computational complexity while maintaining competitive results, and 
most notably, changes in the residual network structure improved the correlation of 
upscaled images with the ground truth. This is reflected in a much-improved LR-PSNR 
scores when compared to ESRGAN, being now competitive with all other methods. 
Improvements that contributed to the increase in efficiency include multiple adjustments in 
residual structure and other aspects of the network architecture, a tuned hybrid loss that 
mitigates the potential for network hallucination, a more efficient mapping between LR and 
HR layers which allowed reducing the number of network layers without heavily affecting 
the quality of the output, and a carefully tuned training strategy that reduced the probability 
of mode collapse. While combined, these changes allowed a 90% reduction in the number 
of network weights, with a direct impact in the computational complexity of the upscaling 
process, while improving all metrics relatively to ESRGAN, except for a small degradation 



           

 

in the LPIPS score. Note that for the purpose of this comparison, our method, originally 
developed for video super-resolution and that supports simultaneous deinterlacing and 
upscaling was adapted for SISR and trained in the DIV2K dataset. 

In the last column of Table 1, we include the throughput achieved with the RTX3080Ti 
GPU with each method. This allows estimation of the relative upscaling costs for each 
method, when running in a single GPU instance in the cloud. As expected, a strong 
correlation between the number of NN coefficients and the throughput can be observed, as 
the number of coefficients will obviously impact the number of multiply and add operations 
to be performed. The relationship is however not completely linear as other factors related 
to the NN architecture and bandwidth constraints affect the practical inference times.  

As a reference for operational costs, a cloud instance with a single V100 GPU has a 
default cost of around $3/hour on the major cloud vendors, with the inference times 
approximately 30% slower than achieved with the RTX3080Ti. Performing a frame-by-
frame upscale of 1 hour of 1920x1080 progressive 60fps video to 3840x2160 takes around 
16h using our method, 47h using the default ESRGAN, 100h using SWIN2R, 125h using 
SRFLOW and a staggering 3300h to run the 100 iterations for each frame using SRDIFF, 
as proposed by the authors. This clearly demonstrates how operational costs can escalate 
quickly, with our method coming at around $50/h, the original ESRGAN at around $140/h, 
SWIN2R $300/h, SRFLOW $375/h and SRDIFF $10000/h, a cost perhaps only justifiable 
to high value assets such as movies. Note that those are only indicative costs, since the 
algorithms may have some scope for optimization over the models provided by the 
authors. Furthermore, we are only focusing on processing costs, not accounting for 
storage and ingress and egress required for a real-world application.  

The results demonstrate that with careful design and optimization to mitigate some of the 
common issues often associated with GANs (such as mode collapse and hallucination), 
GAN-base methods can deliver competitive results with lower computational cost than 
some newly emerging approaches, despite their decline in popularity. They are also well 
suited for video upscale application as the cost of training the additional discriminator 
becomes irrelevant as the model is used to upscale large numbers of images. 

Table 2 provides a relative comparison between the various types of architectures. 

Type Training 

complexity/cost 
Memory 

Footprint 
Inference 

complexity/ cost 
Quality 

PSNR-

oriented 
Low Low Low Low. Images are smooth. 

GAN Medium Low Low Medium. Images tend to be very sharp 

but may suffer from hallucination 

artifacts. 
Transformers High High High Medium. Images can be smooth and 

look unnatural, somewhat cartoonish. 
Flow based High High High High. Better overall balance between 

sharpness, consistency and metrics. 
Diffusion Low Low Very high 

(multiple 

iterations) 

High. Better overall balance between 

sharpness, consistency and metrics. 

Table 2 - Method comparison summary 



           

 

 

SYSTEM ARCHITECTURE AND APPLICATIONS 

Nvidia [61] and Microsoft [62] recently released their AI-driven super-resolution solutions 
that leverage on the local resources found on modern consumer-grade GPUs to perform 
real-time video upscaling and enhancement prior to display (Figure 8), showing how this 
technology is gathering interest among an increasing number of companies. Although 
these solutions are particularly well suited for applications where the stream is only 
accessed by a small number of viewers, such as video-conferencing and old legacy 
content streaming, or for when the bandwidth available for transmission is highly 
constrained, they present some drawbacks that can limit their success for other 
applications. 

 

Figure 8 - Upscaling at the viewer ewer side 

First, the video quality they can deliver is inherently limited as they rely in the viewing 
device hardware resources. Although modern consumer grade GPUs offer high computing 
capabilities for NN inference and generous amounts of memory, the fact upscaling must 
happen during real-time playback highly restricts the size and topology of the DL upscaling 
algorithm used. The results will also be dependent on the resources available on each 
device, meaning content providers have no control over how the video is effectively 
rendered. This directly limits the potential for content monetization as a premium video 
quality doesn’t depend on the content provider but on the viewing device capabilities. 
Additionally, it is extremely energy inefficient at scale when the stream is decoded by 
multiple viewers, as the power-hungry upscaling will have to run on every compatible 
viewing device displaying the content. 

For applications where the same stream is to be accessed by a large number of viewers, 
there are multiple advantages in performing the upscaling at the content provider side 
(Figure 9).  

 

Figure 9 - Upscaling at the content provider side 

First, the content provider retains control over how the content is rendered, guaranteeing 
high quality to every supporting device irrespective of it processing capabilities. This may 
allow the content provider to monetize the higher quality content, while the upscale can 
rely on more resources as it no longer depends on the viewing devices capabilities. Heavy 
resource usages are quickly offset by the fact that the high quality upscale only needs to 
be performed once prior to distribution. Cloud solutions are particularly well suited for this 
application, by providing vast amounts of hardware accelerated resources with fully 
scalable costs. The commercial value of the content becomes the main driver in 
determining the amount of resources economically viable for the application on hand, 



           

 

helping to determine the upscaled video perceptual quality operating point. Figure 10 
schematizes how multiple VM can be used to increase the throughput of the upscaling 
process. 

The main drawback of performing the upscaling at the content provider side is the fact it 
will likely increases the bandwidth required for the content distribution, a factor that can 
however be mitigated with an efficient CDN design, especially when the content is being 
accessed by a large number of viewers. 

 

Figure 10 - VM instance parallelization 

Ultimately, the nature of the application and content value will be the most important 
factors in determining the best DL upscaling approach. Decoder side upscaling will likely 
be the best solution for streams with a very low number of viewers, such as video 
conference or old legacy content, not only because of the limited monetization potential 
but also because it guarantees the upscaling cost is only incurred when needed. Small 
footprint, low inference complexity methods which do not necessarily deliver state-of-the-
art results are likely to be a good option on those cases. Very high value offline content 
such as movies, will likely benefit from the best possible upscaling irrespectively of cost, as 
the high value of the asset will justify the upscaling costs and the processing time is 
unlikely to be critical. Such methods can rely in some of the most complex, highly tailored, 
and better performing approaches, based on state-of-the art methods such as flow and 
diffusion models, running on the cloud, where processing can be scaled accordingly. High 
value live content such as sports will likely impose some restrictions on processing power 
since the upscaling has to happen in real-time and additional delay is critical, but cloud 
scaling may help providing the required processing power withing the budgetary 
constraints, as illustrated in Figure 10. Finally, for any other type of content, a well 
performing and scalable solution may help achieving the best possible video quality on the 
processing resources available, aiming for the right balance of what is economically viable 
given the content value. 

The success of the upscaling strategy is also highly dependent on the dataset used to train 
the model [63], so making sure it is adequately varied and representative of what is going 
to be processed in real-life is paramount. Most of the models in the literature have been 
trained and evaluated using pristine images and video, but in real-world applications, input 
images will often contain artifacts from previous compression stages that need to be 
modelled and taken into consideration [64,65], under risk of producing poor quality 
upscales. Ultimately, it is pointless to adopt a very complex upscaling algorithm that is not 
resilient enough to the variations in the input quality, as it may perform worse than a 
simpler but more reliable approach. 

CONCLUSIONS 

In this paper, we provided an overview of some of the most promising trends and 
architectures for video super-resolution enhancement, comparing their relative 
performance in terms of objective metrics, perceptual quality, and computational 



           

 

complexity. We focused our analysis on SISR as this allowed us to dissociate the effect of 
the spatial detail enhancement achieved by each NN architecture, from the underlying 
success of the feature alignment strategy used by each VSR solution [66-71].  

Super-resolution methods have come a long way since their inception in the 1980s, with 
advances in computer vision, machine learning, and deep learning making it possible to 
generate high-quality images and videos from low-resolution inputs. While the field of SR 
methods is still evolving, recent developments in generative models are likely to play a 
significant role in shaping of content distribution, helping content providers to lower 
production costs to increase their UHD offerings. 
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