

CDN OPTIMIZATION FOR VR STREAMING

R. van Brandenburg1, R. Koenen1, D. Sztykman2

1Tiledmedia, The Netherlands; 2Akamai, USA

ABSTRACT

Streaming audiovisual VR content by brute force (i.e., streaming the entire
360° panorama) requires significant bandwidth and provides mediocre
quality. Several viewport-adaptive streaming schemes have been pro-
posed to alleviate this; “Tiled VR streaming” is one such method. A major
factor determining the QoE of any viewport-adaptive streaming technology
is latency, and there are many different types of latency that contribute to
the overall experience. We explain these latencies, and what the authors
did to reduce overall latency as perceived by the end-user. We give exper-
imental results, showing that Tiled VR streaming using a commercial
Content Distribution Network provides a great QoE, and explain how CDN
and streaming protocol optimisations contribute to this QoE.

1. INTRODUCTION

Virtual Reality is gaining in popularity; new Head-Mounted Devices (HMDs) are announced
almost weekly, and a significant market size is predicted for the coming decade. The study
published by Citi Research [1] is one example; it predicts that [the] “VR/AR market could
grow to $2.16 trillion by 2035 as different industries and applications adopt and make us of
the technology”. Other research, e.g. by Piper Jaffray [2], points in the same direction.

This paper focuses on 360VR: an immersive audiovisual experience that is usually con-
sumed using an HMD. The 360VR market will only take off if high quality content can be
streamed. YouTube would not be nearly as successful if content needed to be downloaded
first. Unfortunately, streaming the entire 360° panorama takes (and wastes!) enormous
amounts of bandwidth. A user typically only sees 1/8th of the panorama in the HMD, but
the brute-force method that most major streaming platforms use, streams the entire
sphere: eight times as many pixels as are consumed. Various techniques for viewport-
adaptive streaming enable higher efficiency, by sending the part of the video that the user
sees in high quality, while relaying the rest of the sphere in much lower quality. Some of
these methods encode many different viewpoints (30 or more) as independent streams,
and then switch between those as the user’s head turns. Kuzyakov and Pio [3] describe
the basic principles in a clear way. The challenge with this approach is switching fast
enough when the user’s head turns. Switching out one viewport (read: bitstream) for a
completely new one takes time and renders the decoder buffer obsolete, causing the bit-
rate to spike, at the cost of both QoE and efficiency. We employ a different method: tiled
streaming. Our method relies on streaming a low-resolution base layer that covers the
entire sphere as well as a selection of high resolution tiles that only cover the current
viewport. We use network-optimised protocols and “Adaptive Switching Latency” client-

side logic to allow very rapid switching when head motion happens. Note that we use the
words “latency” and “delay” interchangeably in this paper.

2. BASICS OF TILED STREAMING

Streaming 360VR by brute force requires significant bandwidth: streaming 4k VR (an
equirectangular projection of 4k x 2k pixels) requires over 20 Mbit/s using today’s best
video codecs, and streaming 8k VR (8k x 4k) requires more than 80 Mbit/s. The difference
between an 8k and a 4k panorama is clearly visible, even with headsets like the Oculus
Rift and the Gear VR that are still fairly limited in terms of resolution (a bit more than 1k x
1k per eye). This problem will get worse as the resolution of HMDs increases: headsets
with a resolution of 2k x 2k per eye have already been announced. Also, having to decode
the full 360 sphere also significantly limits the resolution that can be supported: decoding a
full 8k panorama is beyond the capabilities of current smartphones. Tiled VR streaming
solves both the bandwidth and the decoding problem. It allows streaming of 4k panoramas
at 4 - 6 Mbit/s, and 8k panoramas at 14 - 20 Mbit/s.

For simplicity’s sake, we explain the basic principles using an equirectangular image in this
paper, but we use a cubic projection practice, as tiled streaming works significantly better
with cube maps. For a primer on these projections, see [4].

The first step in a Tiled Streaming system is cutting up the full VR panorama in rectangular
tiles, and encoding each of these tiles such that they are independently decodable. The
details of the encoding are codec-dependent, and outside the scope of this paper, but we
note that the HEVC standard [5] has native support for “Motion Constrained Tile Sets”,
which allows building a system that relies on standards based encoders and decoders.

The tiled, encoded and packaged content can then be placed on the CDN. Next, the trick
is to only stream those tiles that are in the user’s field of view (FoV), either entirely or par-
tially. With current headsets, the field of view is typically around 90° x 90° (horizontally and
vertically), or 1/8th of the entire panorama of the equirectangular projection – see Figure 1.
During playback, the player software determines which tiles are in view and retrieves those
tiles from the network using http streaming techniques. No per-user edge processing is re-
quired, a significant advantage of this method.

While each tile is effectively an independently decodable video, Tiled VR streaming en-
sures that only a single, standardized, decoder is needed to decode these tiles. To
achieve this, the tiled streaming client rewrites the video bitstream at a very low level prior
to presenting it to the decoder. This means that a single hardware or software decoder can
be used, typically available on the (mobile) device, with the lowest possible impact on bat-
tery life. With only a small part of the entire being decoded, 8k panoramas can be support-
ed on devices that could only ever decode a 4k picture. When a user turns their head, it is
important that the response is instant, otherwise they would get sick very easily. Tiled
Streaming accomplishes this instant response by always streaming – and decoding – a
low-resolution background layer. Having this background layer available implies that
motion that users see is fully consistent with the motion they feel, assuming that the head-
set can track this motion accurately.

Figure 1 – Viewport and Tiles

When a VR user turns their head, the vestibulo-ocular reflex [6] makes the eyes stay
focused on same point for a short while, after which they follow the head to the centre of
the new viewport. The system needs to be able to switch to the high-resolution tiles quickly
enough for the high-resolution tiles to be present when the eyes are re-aligned and have
re-accommodated. Depending on the amount of head movement, and the size of the field-
of-view, this means that tiles need to be retrieved within 20-40ms for the low-resolution
nature of the background layer to be unnoticeable to the user. With slow head movement,
and on HMDs with a very large field-of-view (>90 degrees), we have a bit more time
because users are not able to see sharply in their peripheral vision anyway. Given
adequate network conditions, our optimized system [7] can switch from the low-resolution
background layer to high-resolution tiles within one or two frames, resulting in the switch
being fast enough for the switch not to be noticeable or annoying.

3. LATENCIES IN VR STREAMING

As with any viewport-adaptive streaming technology, the quality of experience in Tiled VR
streaming is determined by the latency in switching from the low-resolution (and low quali-
ty) background to the high-resolution imagery. We call this “motion-to-hires latency”. Note
that this is distinct from motion-to-photon latency, which is extremely low because the low-
resolution base layer is always present and decoded. Consider the full end-to-end chain
from head motion as the trigger, to the user seeing the new field of view in high resolution
in the HMD: the total motion-to-hires latency is determined by the factors shown in Figure
2. Looking at these factors in more detail, we can make the following observations.

The sensor latency is the time between head movement and the sensor signal becoming
available to the VR system. This affects all solutions (including brute force) equally.

The network request delay (the client software requesting a new stream or tile from the
CDN) depends on the proximity of the CDN edge to the user, and therefore on the density
of the CDN: the amount of points of presence and the number of interconnects that a CDN

has. This latency affects all viewport-adaptive approaches, and can be lowered by inte-
grating the CDN with the local Internet Service Provider or mobile operator’s network.

The origin-to-edge latency is the sum of the delay in the two left-most boxes in Figure 2:
latency caused by cache misses in the CDN, where the CDN needs to fetch the data from
the origin. Given enough bandwidth in the access network, this is the largest factor in per-
formance variation, from one request to the next. It can be lowered using clever ways of
prewarming the CDN edge. It could be eliminated completely by pushing the entire 360
sphere to the edge, but this comes at significant cost, which we want to avoid.

The most important latency factor is transport over the access network, from edge to
customer premises, and over the local (in-home) network when LAN or Wifi is used. The
underlying causes are round-trip-time (typically higher on mobile networks), available
bandwidth (which can vary wildly) and request size. The latter two factors together form
the transmission delay, or the total time it takes to move the bits over the access net-
work. Whereas the streaming stack cannot change the round-trip-time and available
bandwidth, request size is an important factor, and we’ll discuss this in the Section 4.

Buffering in client device before decoding is the latency incurred between receiving the
tiles (bitstream fragments) and presenting the final bitstream to the decoder. This latency
strongly depends on the streaming protocol and the packaging format. It can vary wildly
depending on the implementation, and strongly impacts on user-perceived latency.

Decoding delay is determined by random access latency and the design of the decoder
pipeline. Latency incurred by retrieving data back to an Independently Decodable Refer-
ence (IDR) frame and decoding all frames from that IDR frame until the required frame can
be very significant. Many solutions suffer from it, including those that switch out the entire

Figure 2 – Overview of latency factors in a Tiled VR Streaming system.

viewport. The exact delay depends on the frequency of IDR frames in the stream. The
presence of B-frames and the framerate also impact this delay significantly.

How much delay is incurred by the rendering in the HMD depends on the operating sys-
tem’s frame buffer architecture. Most video players and platforms use a dual frame buffer.
Some platforms, such as Google’s Daydream, have a single decoding buffer. While one
frame difference seems small, at 30fps this is 30ms, which is a lot when one wants to
switch tiles within 20-40ms. Again, the effect is lowered with increasing framerates. Note
that this latency also affects the low-resolution base layer; it actually affects all VR stream-
ing solutions. Together with sensor latency, this determines the motion-to-photon latency
in a tiled VR streaming system.

The size of decoding viewport (not depicted in Figure 2) also affects motion-to-hires laten-
cy. Latency can be reduced by simply retrieving and decoding more tiles than are dis-
played; high-resolution tiles that are required for limited head motion will then already be
available, eliminating all latencies up to the rendering – obviously at the expense of in-
creasing bitrate. For 8k panoramas, this may push the decoder beyond its Profile/Level
capabilities. Just fetching more tiles to the device without decoding also increases bitrates
but pushes the decoder less, so this can be applied to higher resolution panoramas. This
will eliminate all latencies up to the decoding. But both approaches increase bitrates, while
the motion-to-hires latency in a well-designed system is so short that this is not required.

The next section will describe how our Tiled VR implementation, using a combination of
client-side logic, optimal packaging, and CDN optimizations, reduces the total motion-to-
hires latency, from sensor to decoding, to an unnoticeable less than one frame.

4. OPTIMISING THE NETWORK STACK FOR VR STREAMING

Insufficient bandwidth, either in the last mile or on the Wifi connection at home, will deter-
mine much of the latency in a real deployment. However, very significant gains can be
made by making improvements to both the client and the CDN side, to make the most effi-
cient use of the available bandwidth, and to reduce latency as much as possible. Working
together, the authors have developed a number of optimisations for Tiled VR streaming in
Akamai’s Content Delivery Network as well as in Tiledmedia’s Tiled VR client implemen-
tation. These optimisations target the two most prominent factors of latency in the end-to-
end system: origin-to-edge delay, and transmission delay.

Transmission delay

As mentioned, the total transmission delay is determined by three factors: 1) round-trip-
time, 2) available bandwidth (bits per second) and 3) request size (number of bits per
request). The first two elements are fixed, and to reduce total latency, we need to focus on
the request size: by minimizing the total number of bits that need to be sent.Traditional
streaming solutions, such as HLS and MPEG DASH, use segmented content: with each
segment typically between 3 and 30 seconds long, and the client sequentially retrieves
these chunks for playback. This poses a problem for tiled streaming, or any FoV-adaptive
streaming solution: it fixes the request size to the size of a segment. This means that with
the head turning at frame X, instead of retrieving a bunch of frames starting with X+1, one
must fetch the full segment of which frame X+1 is a part. Many bytes may have to be
transferred before frame X+1 arrives, with a potentially huge impact on latency.

Our implementation uses a custom packaging format to provide spatial as well as temporal
random access, to every frame frames of every tile. In combination with byte range
requests, this avoids having to request any bytes that are not absolutely necessary, result-
ing in a very significant reduction of transmission delay.

Origin-to-edge delay

With, e.g., long tail content that’s not frequently accessed, it’s likely that a specific spatio-
temporal tile is not available on the CDN edge. Given the significant latency induced by
fetching data from the origin, the number of cache misses has a huge impact on the
average tile switching latency. Our platform includes elements to try to reduce the number
of cache misses. First, we use an intelligent cross-tile packaging algorithm, to make sure
that data that is likely to be fetched closely in time is also packaged closely together. This
increases the chances of the CDN caching the right bits. Second, we give the CDN hints
as to which data is likely to be fetched soon. Using a combination of content-specific
heuristics as well as user behaviour, the client can predict with tiles are likely to be
requested shorltly. By conveying this information to the CDN, the CDN can fetch this data
from the origin in anticipation, and place it on the edge, ready for retrieval by the client.

CDN & transport optimizations

Being closer to consumers means a lower round-trip time (RTT) and a higher bandwidth
connection, so larger CDNs have a natural advantage, and Akamai’s CDN has over 3500
points of presence. As the client is doing byte range request, the Akamai edge is using a
mechanism to request byte ranges in 10MB chunks from the origin and stores these in the
cache. When the next byte is requested, this range is likely to be already available. This
process is illustrated in Figure 3.

 Figure 3 – Caching Process

Finally, transport-level improvements help reduce the latency. While the client is compati-
ble with HTTP/1.1, tile switching latency is reduced when using a CDN that uses HTTP/2
and/or QUIC. QUIC (for Quick UDP Internet Connections, pronounced as “quick”) is an

experimental transport layer network protocol originally designed by Jim Roskind at
Google [8]. QUIC supports a set of multiplexed connections between two endpoints over
UDP and was designed to provide security protection equivalent to TLS/SSL, along with
reduced connection and transport latency, and bandwidth estimation in each direction to
avoid congestion. QUIC's main goal is to improve perceived performance of connection-
oriented web applications that are currently using TCP. With QUIC we can establish a new
secure connection with zero RTT, meaning the server can start exchanging data right
away, which gives a further reduction in latency. We done our measurements using
HTTP/2 and are now implementing QUIC for a further latency reduction.

5. EXPERIMENTAL RESULTS

Experimental Conditions

We performed tests with simulated (i.e., recorded), but significant head motion using 30
frames per second, 8k x 4k panorama encoded using 96 high-resolution tiles. Measure-
ments were averaged over 5 runs of 3 minutes. The content was encoded using separate
HEVC encoders for each of the tiles, with tile size fixed at 512 x 512 pixels. The bitrate
from the edge to the end user was between 12 and 16 Mbit/s; we note that this is a
relatively easy scene to encode, but that scene complexity does not significantly affect
what we measured in this experiment. The number of tile switches in each run is about
600, so the measurements cover a total of approximately 3,000 tile switches. Before each
run, the cache was cleared. Note that this represents a worst-case condition, as popular
content will often be available at the cache already. The content was played back using
Akamai’s production CDN; we did not use or require special experimental configurations
as we deployed the optimizations developed in this joint effort to Akamai’s production plat-
form. The content item used was a 3-minute recording of a Blue Man Group show music
item. It includes scene cuts and occasionally a slowly moving camera. The conditions are
summarised in Table 1, below.

Table 1 – Summary of Experimental Conditions

Content Blue Man Group, “Live at Luxor”, recorded by Digital Immersion, usage courtesy
of Harmonic, Inc.

Clip length 3 minutes

Resolution 8k x 4k Equirectangular Projection, transformed to Cubemap

Encoding Customized HEVC encoder, with motion vectors constraints

Bitrate 12 – 16 Mbit/s from Edge to HMD, depending on head movement and scene
complexity

Layers Two, one high resolution and one low-resolution fall-back

Tile size 512 x 512

Tile switches ~600 per run

Runs 5

Experimental Results

Figure 4 depicts tile switching latency measured using Tiledmedia client, connected over
Wifi and streaming from Akamai’s CDN. The diagram shows the average time it takes for a
tile switch to be completed (i.e. the motion-to-hires latency), in a variety of scenarios.

The grey line with the triangles shows the situation with a warm cache, meaning all tiles
were on the CDN edge, with no cache misses. As shown, in this case more than 95% of
the tile switches were completed within one frame, meaning they were imperceptible by
the end-user. The impact of the cache hinting technology can be seen by comparing the
blue and orange lines. The blue line with the diamonds shows the situation with a cold
cache and without the cache hint technology. In this case, the impact of a cache miss is
clearly visible, with some tiles taking more than 10 frames, or over 300 msec., to arrive,
which will be noticed by the user. The orange line with the squares denotes tile switching
with cache hinting enabled. While the average latency is not as good as for a fully warm
cache (obviously not all head movement can be predicted), it significantly lowers the
average switching latency. Some tile switches may be noticeable, but most are not.

0

20

40

60

80

100

1 3 5 7 9 11

%
	O
F	
TI
LE
	S
W
IT
C
H
E
S	
C
O
M
P
LE
T
E
D

#	OF	FRAMES	AFTER	TILE	SWITCH

TILE	SWITCHING	LATENCY	(TILEDMEDIA	V2.9,	OVER	WIFI,	FROM	AKAMAI)

Cold	cache Cold	with	cache-hints Warm	cache

Figure 4 – Average Tile Switching Delay.

These measurements were done with pre-recorded and then simulated head motion;
visual tests over a number of content different items confirm what Figure 4 indicates. With
the optimized network stack, and cache hinting enabled, tile switches were seldom notice-
able and never obtrusive.

5 CONCLUSIONS

For VR360 services to become successful, they need to be able to be streamed at high
quality, which requires bandwidth savings of an order of magnitude over today’s “brute
force” delivery methods. Tiled VR streaming provides very significant bitrate savings over
brute force VR360 distribution, and it is substantially more efficient than viewport-adaptive
streaming methods that switch out the complete viewport, and it provides a better user ex-
perience than those approaches. A careful analysis of the various latencies in the retrieval
of high resolution tiles has allowed us to optimize the protocols in our CDN network and in
our tiled streaming network stack, with measurable and visible improvements, to the point
that the user barely ever notices the presence of the low-resolution background layer.

We intend to continue our research to further improve the bandwidth efficiency of our VR
streaming solution, and to further lower the latencies that determine the user experience.

REFERENCES

[1] Citi GPS, 2016. Virtual and Augmented Reality, Are You Sure It Isn’t Real?

[2] Munster, G., Jakel, T., Clinton, D., Murphy, E., 2015 Next mega tech theme is virtual
reality, Piper Jaffray Investment Research.

[3] Kuzyakov, E. and Pio, D. 2016. Next-generation video encoding techniques for 360
video and VR. tinyurl.com/z5uxuh7, last accessed 8 May 2017.

[4] Kuzyakov, E. and Pio, D., 2015. Under the hood: Building 360 video”.
tinyurl.com/nwrcr5b, last accessed 8 May 2017.

[5] ISO/IEC JTC1 SC29 WG11 (MPEG), 2015. ISO/IEC 23008-2:2015 Information tech-
nology — High efficiency coding and media delivery in heterogeneous environments —
Part 2: High efficiency video coding

[6] Wikipedia, “Vestibulo–ocular reflex”, tinyurl.com/y7jtq8qc; last accessed 8 May 2017

[7] Tiledmedia, “Technology”, tiledmedia.com/index.php/technology/, last accessed 8 May
2017

[8] QUIC, https://www.chromium.org/quic, last accessed 8 May 2017

