

A SCALABLE DISTRIBUTION SYSTEM FOR
BROADCASTING OVER IP NETWORKS

R. J. Bradbury

BBC Research & Development, United Kingdom

ABSTRACT

The commoditisation of media consumption devices in recent years
presents an opportunity to experiment with new content experiences that
decompose traditional media content into discrete objects that can be
recombined by receivers in many different ways. IP-based networks, both
wired and wireless are expected to deliver these objects to consumers, but
the need to scale them up to very large audience sizes, especially for
simultaneous linear consumption, requires the development of advanced
distribution technologies that are fit for this purpose.

INTRODUCTION

Time-shifted media consumption – especially the viewing of content on demand –
continues to erode the viewing share of traditional linear television. However, the split in
the UK is still around 15% (time-shifted) to 85% (linear) and while the trend towards on-
demand consumption will probably continue for drama and entertainment, we believe that
mass linear viewing will remain a mainstay for news, sport and other live coverage.

At the same time, valuable terrestrial spectrum is being reallocated from broadcasting to
cellular radio telecommunications, meeting a perceived consumer demand for mobile data.
Some of this capacity will be used for on-demand media consumption on the move. The
scope for traditional broadcasters to introduce better-quality television services on today’s
digital terrestrial television platform is thus constrained. As broadcasters turn their attention
increasingly to wired and cellular networks for the delivery of their linear services, the
ubiquity of Internet Protocol technology presents an opportunity to converge distribution
mechanisms around common networking standards.

As part of its public service remit to address all licence fee payers, the BBC has for a long
time provided over-the-top Internet simulcasts of its linear television and radio channels,
latterly as part of its successful iPlayer service. These are gradually migrating from
proprietary technologies to standards-based formats like MPEG-DASH to ensure the
widest possible reach, including commodity web browser clients and mobile devices as
well as connected television sets and set-top boxes. Streams are encoded at several
different bit rates and clients adapt dynamically between these as network conditions vary.

From an initial starting position where the BBC operated its own Internet streaming
infrastructure, third-party Content Delivery Network (CDN) partners nowadays help us to
meet an ever-increasing audience demand for IP-delivered media services. But the current
unicast mode of delivery, where each viewer receives a unique stream from a CDN edge

cache, is inefficient, costly and doesn't scale to audience sizes comparable with linear
broadcast that we anticipate in the medium to long term.

Some fixed line telephony companies already distribute Pay TV channels over their
managed networks using the more efficient multicast mode of transmission in which only
one copy of a stream is transmitted over each network link. But current IPTV specifications
are based on older MPEG-2 Transport Stream technology and do not allow for dynamic bit
rate hopping.

BBC R&D is engaged in a research project attempting to combine the multicast
transmission mode with the concept of dynamic stream adaptation. We have developed
prototype senders and receivers, and have specified the network protocols necessary to
demonstrate a robust end-to-end IP television transmission system. One of our design
objectives is to target commodity receivers, and this includes not only traditional
embedded software implementations, but also those that use generic web browsers for
media playback.

Looking to the future, we have designed the system so that it can convey media “objects”
of any kind with the highest resilience and the lowest possible network overheads.

Working with international standards bodies to adapt and reuse existing specifications
where possible, we have created a means to distribute linear media objects at scale.

EXISTING STANDARDS

IPTV standards

The widely adopted DVB-IPTV specification [1] is aimed at conveying an MPEG-2 Single
Programme Transport Stream across an IP network from a head-end source to many
receivers. It achieves this scalability goal primarily by employing the technique of IP
multicast packet replication, a feature commonly implemented in modern IP routers.

An MPEG-2 Transport Stream is designed to be carried over a quasi-error-free
communications channel and decoded using a clock that is precisely synchronised with a
broadcast source. IP networks, on the other hand, are designed with different reliability
criteria. They are packet-switched and take advantage of asynchronous time division
multiplexing to extract transmission efficiencies from the underlying network links. This
results in links being oversubscribed and packets suffering from delay, jitter and even loss
when a router’s packet buffer overflows. It is assumed that a higher-level transport protocol
will provide packet loss detection and recovery where a particular application requires
those features.

In the case of IP multicast, the only transport protocol widely available today is the User
Datagram Protocol (UDP) which offers only rudimentary error detection, and no loss
detection or recovery mechanisms. To overcome some of these shortcomings DVB-IPTV
specifies the use of the Real-time Transport Protocol (RTP) [2] which provides some of the
missing features, such as packet sequencing, and a timestamp field that enables clock
recovery by the receiver. It additionally specifies the use of an audio-visual profile for RTP
[3] originally devised for teleconferencing, and a payload format [4] for carrying up to
seven MPEG-2 Transport Stream packets in an IP datagram on a typical network. To

overcome the fundamental unreliability of IP networks, DVB-IPTV also specifies a Forward
Error Correction (FEC) mode and a highly scalable retransmission service that allows
individual receivers to request missing RTP packets.

Internet streaming standards

Over-the-top media streaming in the Internet was historically based on proprietary
standards. Typically, streams were made available in unicast form and employ a variety of
different media transport and control protocols, including RTP [2] and RTSP, but the audio
and video CODECs carried were often vendor-specific. In the case of live streams, either
the head-end system needed to be able to replicate the stream for each consumer and
needed enough network bandwidth to serve those duplicate streams, or else specialist
streaming media proxies had to be installed in the distribution network to achieve the
desired scaling. Neither was an attractive option for ubiquitous access. Another factor
limiting the success of these first-generation technologies was the limited availability of
player clients for operating systems beyond the mainstream.

Making a stream available at a single bit rate can result in a poor end user experience.
The unreliability of IP networks, especially packet loss resulting from traffic congestion,
can cause playback interruption following an underrun event (so-called “rebuffering”) while
the client attempts to refill its playback buffer. Clients typically insure against this risk by
delaying playback to give them more leeway, but at the cost of latency compared with live.

A new idea to emerge in the past ten years is to make streams available at a variety of
different encoded bit rates and to allow the end client to select the one best suited to the
prevailing network conditions. This dynamic adaptation by the client requires
corresponding switching points in the different encoded streams to ensure a smooth
playback experience. Fluctuations in network performance are most acutely felt in cellular
wireless data networks as the mobile terminal equipment moves from one cell to another,
and it is no coincidence that the development of dynamic adaptive streaming technology
has paralleled the widespread uptake of smartphones.

A number of proprietary technologies exploit this idea and combine it with the widely-
implemented HTTP download protocol. Apple’s HTTP Live Streaming (HLS) is one of the
most widely deployed examples and originally used segmented MPEG-2 Transport
Streams to provide the required switching points. Slightly different approaches using
fragmented MP4 files (more formally known as ISO Base Media File Format) are used by
Microsoft for its Smooth Streaming format and by Adobe in its HTTP Dynamic Streaming
(HDS) format. These companies, along with 3GPP, contributed their respective
technologies to a standard for dynamic adaptive streaming called MPEG-DASH, published
in early 2012 [5]. Recent efforts by MPEG to specify a Common Media Application Format
(CMAF) based on fragmented MP4 offer hope at last of a unified packaging format for
media, but failure to agree on one Common Encryption mode continues to hinder universal
playback compatibility for protected content.

The trend for all these second-generation packaging formats has been towards the use of
standard audio–visual CODECs such as H.264/AVC and AAC, both of which can be
decoded in hardware on modern mobile devices. It remains to be seen whether
H.265/HEVC will enjoy the same ubiquity in the future, or whether community-based

efforts and royalty-free proprietary CODECs like VP9 stunt its uptake. The proliferation of
different CODECs has implications on the number of different formats that content
providers will need to publish in order to achieve universal coverage.

Problems with poor TCP throughput over long distances (resulting from a high bandwidth–
delay product) have been addressed by serving content from edge caches placed
strategically closer to the end user. Because the network round-trip time is reduced, TCP
is able to achieve better throughput. Edge caching is made practical by the convergence of
all parties on a standard download protocol: HTTP. Third-party Content Delivery Networks
(CDNs) typically install caches in the core network of an Internet Service Provider to
achieve the desired scale, and then charge content providers for the volume of content
distributed. Some large content providers, including the BBC, have even installed their
own caches in larger Internet Service Provider networks [6] [7] in order to have more direct
control over both end user experience and distribution cost.

Multicast streaming standards

In cases where the same stream needs to be delivered to many receivers simultaneously,
the multicast transmission mode offers efficiency savings over CDNs because the packet
replication can be performed as a low-level function in a network router rather than by an
additional high-level application function.

The Internet Engineering Task Force (IETF) has created a toolkit of protocol specifications
for delivering media streams reliably over multicast IP networks. Recognising that different
applications have different requirements, the Reliable Multicast Transport working group
first specified a set of abstract protocol building blocks that could be combined in different
ways [8] and then set about creating concrete protocol instantiations of these building
blocks:

• Asynchronous Layered Coding (ALC) [9] is a protocol instantiation that provides
reliability and massive scalability through the use of Forward Error Correction. It
builds primarily on the Layered Coding Transport (LCT) building block.

• File Delivery over Unidirectional Transport (FLUTE) [10] uses the ALC protocol
to deliver a file carousel over multicast. It introduces the higher-level concept of a
File Delivery Session and a carousel manifest called the File Delivery Table.

• NACK-oriented Reliable Multicast (NORM) [11] is a different protocol instantiation
that uses signalling of data loss by the multicast receiver (negative
acknowledgements, or NACKs for short) to drive a bidirectional repair mechanism.
Repair using Forward Error Correction is also supported as an option.

While technically strong, these protocols are complex and difficult to implement well. They
are also quite different from the HTTP-based protocols in common use by web browsers
embedded in consumer devices such as mobile telephones and tablet computers, a barrier
to widespread adoption. They have, however, made some successful inroads in broadcast
applications, as illustrated by the following three examples.

In the United States, CableLabs has developed and published an open specification for
“multicast-assisted adaptive bit rate” over CATV networks [12]. In the CableLabs reference
architecture, a centralised multicast controller is responsible for managing the complete

end-to-end transmission chain from a content packager and a multicast server located at
the cable head-end, to a multicast client embedded in the home gateway device.
Segmented MPEG-2 Transport Streams or fragmented MP4 files are transmitted over
multicast using a profile of the NORM protocol and any gaps resulting from missing
packets are filled using byte range requests to an HTTP origin server, such as a CDN
edge cache.

The 3GPP standards for cellular mobile telephony specify the use of FLUTE to deliver
MPEG-DASH media segments over LTE networks as part of a Multimedia
Broadcast/Multicast Service (MBMS) [13]. In the LTE Evolved Packet System architecture,
a centralised Broadcast/Multicast Service Centre (BM-SC) is responsible for generating
the FLUTE streams, and an MBMS Client in the mobile terminal equipment receives and
processes them. The BM-SC explicitly controls which live streams are available via
multicast and can signal a set of MBMS Clients to switch from a unicast operating mode to
multicast when the number of consumers in a particular cell exceeds a configurable
threshold (Multicast operation on Demand, or “MooD”). The use of an HTTP-based repair
mechanism over a unicast bearer is also specified.

A variant of FLUTE called ROUTE (Real-Time Object Delivery over Unidirectional
Transport) has been adopted by the Advanced Television Systems Committee (ATSC) in
the United States as a proposed standard for delivering digital terrestrial television
services over IP multicast as part of its ATSC 3.0 specification [14]. ROUTE is available as
an alternative to the MPEG Multimedia Multiplexing Transport Protocol. The media
essence is packaged as MPEG-DASH media segments in both transport protocol options.

BBC RESEARCH & DEVELOPMENT’S PROTOTYPE SYSTEM

In designing an object-based broadcasting system we had six high-level goals:

• Reliability. We want the playback experience to be as flawless as possible. We
achieve reliability by combining a multicast mode of operation with a unicast
fallback. FEC may not be needed, although this is the subject of future work.

• Scalability. We need to address a very large audience. We selected a mixture of IP
multicast and conventional unicast CDN distribution as our delivery modes.

• Reachability. The ability to consume services on a wide variety of different terminal
devices, including web browsers as well as embedded receiver devices such as
smartphones, tablet computers, connected TV sets and set-top boxes.

• Simplicity. Multicast streams should be easily discoverable. The technology
solution mustn’t be so complex that it cannot easily be implemented in commonly
deployed embedded hardware.

• Seamlessness. The mode of reception (multicast or unicast) should be transparent
to the application layer and the transition between these modes should be
imperceptible to the end user.

• Commonality. We want to use identical encoding, packaging and distribution
formats across unicast and multicast delivery modes.

We do not regard IP multicast as the primary mode of distribution in this system. The
unicast mode, assisted by conventional CDN technology, remains the primary mode with
IP multicast deployed selectively where the audience demand justifies its use. For
example, a system operator may opt to distribute only the one or two most frequently
requested video Representations (different encoded bit rates) of a channel via multicast
based on analysing the cost of doing so relative to CDN distribution costs.

To that end, every object we distribute is uniquely addressed by a Uniform Resource
Locator (URL) that is common across the two distribution modes. For an MPEG-DASH
linear stream, individual media segments are numbered sequentially across all
Representations in a particular Adaptation Set so that the “current” segment to be played
back can be calculated by a client based on wallclock time. But this needn’t be the case for
non-linear objects.

Multicast transport selection

In selecting a multicast transport protocol our goal was to map the request–response
semantics of HTTP into a unidirectional mode so that a client can reference objects by
their URL without needing to worry about whether the objects are being acquired from a
multicast stream or requested from a server using conventional unicast retrieval. The main
technical requirement in achieving this goal is to associate HTTP object metadata with the
objects being transmitted in a multicast stream.

Our initial efforts centred on adapting RTP [2] to carry HTTP metadata. As with some of
the other multicast technologies described earlier in this paper, this “retrofitting” proved
somewhat cumbersome, in our case using RTP extension headers to convey the
information required for successful reassembly and repair of transport objects. We next
turned our attention to a new transport protocol – QUIC – developed originally by Google
to speed up web access, and currently undergoing standardisation by the IETF [15].

QUIC (Quick UDP Internet Connections) is designed as a reliable transport protocol to
rival (and perhaps eventually to replace) TCP. It is designed from the ground up to
incorporate much of the accumulated thinking in transport protocol design gained from
years of experimentation with TCP, and to correct some of its shortcomings. QUIC is a
simple, reliable connection-oriented protocol built on top of UDP. Unlike TCP, where the
pace of evolution is hampered by kernel development cycles, this allows rapid prototyping
and testing of new features in user space without requiring modification of the operating
system network stack, followed by a phased roll-out by operating system vendors. This, in
turn, accelerates deployment and promotes uptake.

Crucial to our Use Case, from the very start Google specified a native mapping from HTTP
request–response semantics directly onto the QUIC framing layer in a very natural and
elegant manner [16]. A binary framing syntax inspired by HTTP/2 permits multiple logical
request–response “streams” to be multiplexed into a single transport-level association
without the “head-of-line” (front-of-queue) blocking problems that bedevil HTTP over TCP.
The mapping also provides a handy “server push” mode of operation. This, combined with
its UDP base, made QUIC an attractive choice for adaptation by us to multicast usage.

Description of system operation

Figure 1 illustrates our proposed system for large-scale broadcasting over the Internet.

A Head-end transmission function consumes resources from an HTTP origin server and,
with optional transport-level encryption, segments them into packet-sized transmission
units using the QUIC framing and packetisation layers. HTTP metadata, including the
URL, is multiplexed in alongside each transmission object using standardised name–value
pairs called “header fields”. Additional data integrity checks may be included in the QUIC
packet layer at this point. Provision has also been made in the QUIC specification for the
future addition of FEC codes. Finally, the QUIC packet stream is encapsulated in UDP/IP
datagrams (IPv4 or IPv6) for transmission to a configurable multicast IP group address.

At the receiving end, the opposite process occurs in a function we refer to as a Client
Proxy because it behaves as a caching HTTP forward proxy. (This is just one possible
operating mode: others are equally valid.) The Client Proxy is responsible for subscribing
to the appropriate multicast groups (using IGMP or MLD). QUIC packets are extracted
from the payload of incoming multicast UDP/IP datagrams. They are integrity checked and
decrypted (if transport-level encryption was used) before the QUIC frames contained in
them are reassembled into transmission objects (the original HTTP resources).

Multicast

Head-end

Client

Proxy

C
a

c
h

e

Unicast

Multicast

Media

Player

Unicast

Origin

Server

Unicast

Figure 1 – High-level end-to-end system architecture

In our prototype implementation, we layer an end-to-end MPEG-DASH application on top
of this basic arrangement. The Head-end system acts as a modified DASH client. First, it
fetches and parses a DASH Media Presentation Description (MPD) corresponding to a
particular linear channel. Then it retrieves media segments (the objects to be transmitted)
simultaneously from one or more of the Representations described in the Presentation.
The stream of media segments corresponding to each such Representation is serialised
and transmitted to a different multicast IP group. The mapping between Representations
and multicast groups could be configured in the Head-end software by some central
system, or else conveyed in an extended MPD. In our prototype we instead convey the
per-Representation configuration in the metadata of media Segments retrieved from the
HTTP origin server.

A media player initiates a linear DASH streaming session by requesting the same MPD
through its local Client Proxy. For each media Adaptation Set in the Presentation, the
Client Proxy “thins” the MPD so that there is only one Representation. All responsibility for
selecting a particular Representation is thereby ceded by the media player to the Client

Proxy. The Client Proxy also modifies the timing in the MPD to introduce a small delay
before returning the MPD to the media player client.

Our implementation of the Client Proxy incorporates a simple HTTP cache backed by a
modest amount of dynamic memory or non-volatile storage. The media player’s request for
the first media segment of a particular Adaptation Set is routed through the Client Proxy.
Since the requested segment is not available from its local cache (a cache “miss”), the
Client Proxy simply forwards the request on to the HTTP origin server, and returns the
response to the media player. It also caches the media segment for the benefit of any
other clients consuming the same Presentation.

In parallel, the Client Proxy subscribes (if there is one) to the multicast stream
corresponding to the currently selected Representation for that Adaptation Set and waits
for the start of the next transmission object. As multicast packets arrive at the Client Proxy
they are directed to a temporary buffer where they are reassembled into the original
transmission object. If any multicast packets are lost in transit (for example, as a result of
network congestion), and cannot be recovered by autonomous means (such as FEC) the
reassembler is able to request the missing portions of the original transmission object via a
conventional unicast HTTP “byte range” request to the origin server. (This could be
achieved using HTTP/1.1, HTTP/2 or even HTTP over conventional unicast QUIC.) The
reassembler uses standard HTTP metadata carried in the multicast transport protocol to
identify the correct URL and the missing range of bytes. For efficiency, several byte ranges
(disjoint or contiguous) can be packed into a single HTTP unicast “patch” request.

The Client Proxy places reassembled transmission objects into its cache. Because the
timing of the Presentation was artificially delayed slightly when the MPD was returned to
the media player application, there is an excellent chance that a given media segment will
already be cached by the Client Proxy when the media player requests it (a cache “hit”).
Unicast requests are thus limited to the start of a linear streaming session (for example,
immediately following a user-initiated channel change event) and for “patching up”
damaged transmission objects as part of a simple HTTP-based stream repair mechanism.

OPERATIONAL CONSIDERATIONS

A typical MPEG-DASH linear channel might comprise the following:

• An Adaptation Set offering a choice of several video Representations encoded with
different CODEC profiles/levels, spatial resolutions, frame rates and/or bit rates.

• Adaptation Sets for different soundtracks (e.g. multilingual tracks, surround sound
mix, object-based audio), each one perhaps offering a choice of several
Representations encoded with different audio parameters at different bit rates.

• Adaptation Sets offering EBU Timed Text streams for live subtitles.

• Additional event streams providing user-facing metadata (e.g. information about the
current and next programmes on the channel) or machine-readable metadata (e.g.
to drive a companion screen application).

The operator of such a channel may choose to provide one, several or all of the encoded
media Representations as multicast streams. The decision on which to offer via this mode

will typically be based on an analysis of the operational costs measured against the
benefits. This largely boils down to the number of consumers of a particular
Representation. For each channel, there will be a crossover point where it is more cost-
effective to provide the Representation via multicast than via conventional unicast.
Conversely, below a certain threshold, the additional cost of conveying a multicast stream
through the distribution network cannot be justified. For example, a channel operator may
only choose to multicast the HD video stream and the main stereo soundtrack with all
other Representations distributed via unicast only.

The decision on which Representations to distribute via multicast can be varied
dynamically according to client demand. By monitoring unicast origin requests (probably
CDN edge cache logs) in real time, a channel operator can detect when the threshold for
enabling multicast has been reached for a particular Representation. In the prototype
system described above, a multicast stream can be turned on or off at any time simply by
manipulating HTTP headers at the origin server; in vertical deployments this could be a
centralised control function of the network operator.

DEPLOYMENT SCENARIOS

The basic systems described can be deployed in a number of different configurations. In
the simplest deployment architecture the Client Proxy is integrated into the receiver device
alongside the media player and this tight coupling simplifies the operation of the two
functions working in tandem. This is a very efficient deployment model because Layer 3
multicast packet replication by network routers is employed all the way to the end host. It
does, however, require the device to have a multicast reception capability. While this may
be the case for a mobile phone handset operating over an LTE cellular network, or a
television set connected to a home router via an Ethernet patch cable, access to multicast
packet streams over Wi-Fi networks is more troublesome because of limitations in
commonly installed Wi-Fi access points [17]. Solutions to these technical problems exist
[18] [19] but are still not yet widely deployed.

In an alternative deployment architecture the Client Proxy function is co-located with the
Wi-Fi access point, typically in a home router device. The conversion from multicast to
unicast is thus performed before interaction with the home Wi-Fi network. While it is less
efficient to do the fan-out at Layer 7, the Client Proxy’s cache entries can now be shared
by multiple media players watching the same linear channel simultaneously. From the
perspective of a network operator, managing a single Client Proxy in each subscriber’s
premises greatly simplifies a vertically-integrated deployment, especially if the operator
supplies the home router device with the Client Proxy pre-integrated.

A third possible model for deployment is for a network operator to offer the Client Proxy
function within its network, typically alongside the router nearest to the access network
edge. In the context of recent innovations in edge computing, this third deployment model
can be interpreted as an acceleration technique that uses Layer 3 multicast packet
replication to feed a set of edge caches, thereby eliminating some of the latency that would
otherwise be required to fetch media segments from an upstream mid-tier cache using a
conventional Layer 7 unicast HTTP request/response interaction. Crucially, however, this
is only an efficiency saving if the Client Proxy can be placed cost-effectively downstream
of a “bottleneck” in the operator’s network. This may not be the case in some of today’s

networks, but the current trend is for edge routers to be pushed deeper into both fixed and
mobile networks, the latter as part of a more centralised Radio Access Network
architecture [20].

STANDARDISATION WORK

BBC R&D’s prototype multicast transport based on the QUIC packet and framing syntax
has been published by the Internet Engineering Task Force as an Internet Draft [21]. We
are continuing to work with IETF colleagues to promote the use of QUIC for multicast
HTTP applications.

Meanwhile, the Digital Video Broadcasting (DVB) project has established a workstream
looking at the standardisation of dynamic adaptive streaming over IP multicast. A number
of companies came together in 2015 to draft commercial requirements and these have
now been passed to the DVB’s Technical Module for standardisation. BBC R&D is actively
participating and hopes that some of its ideas in this area will make it into the final DVB
specification.

REFERENCES

[1] Digital Video Broadcasting project (DVB), Digital Video Broadcasting (DVB); Transport
of MPEG-2 TS Based DVB Services over IP Based Networks, European
Telecommunications Standards Institute, TS 102 034, 2016.

[2] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RTP: A Transport Protocol
for Real-Time Applications,” RFC 3550, July 2003. https://tools.ietf.org/html/rfc3550.

[3] H. Schulzrinne and S. Casner, “RTP Profile for Audio and Video Conferences with
Minimal Control,” RFC 3551, July 2003. https://tools.ietf.org/html/rfc3551.

[4] D. Hoffman, G. Fernando, V. Goyal and M. Civanlar, “RTP Payload Format for
MPEG1/MPEG2 Video,” RFC 2250, January 1998. https://tools.ietf.org/html/rfc2250.

[5] International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC), Information technology — Dynamic adaptive streaming over HTTP
(DASH) — Part 1: Media presentation description and segment formats,
ISO/IEC 23009-1, 2012.

[6] F. Benedetto, “BIDI: The BBC Internet Distribution Infrastructure explained,” 22
September 2016. http://www.bbc.co.uk/blogs/internet/entries/8c6c2414-df7a-4ad7-bd2e-
dbe481da3633.

[7] Netflix Incorporated, “ISP Partnership Options,”
https://openconnect.netflix.com/en/delivery-options/.

[8] B. Whetten, L. Vicisano, R. Kermode, M. Handley, S. Floyd and M. Luby, “Reliable
Multicast Transport Building Blocks for One-to-Many Bulk-Data Transfer,” RFC 3048,
January 2001. https://tools.ietf.org/html/rfc3048.

[9] M. Luby and L. Vicisano, “Asynchronous Layered Coding (ALC) Protocol Instantiation,”
RFC 5775, April 2010. https://tools.ietf.org/html/rfc5775.

[10] T. Paila, R. Walsh, M. Luby, V. Roca and R. Lehtonen, “FLUTE - File Delivery over
Unidirectional Transport,” RFC 6726, November 2012. https://tools.ietf.org/html/rfc6726.

[11] B. Adamson, C. Bormann, M. Handley and J. Macker, “NACK-Oriented Reliable
Multicast (NORM) Transport Protocol,” RFC 5740, November 2009.
https://tools.ietf.org/html/rfc5740.

[12] W. Jennings, D. Torbet and I. Wheelock, IP Multicast Server-Client Interface
Specification, CableLabs, 2016.

[13] 3rd Generation Partnership Project (3GPP), Universal Mobile Telecommunications
System (UMTS); LTE; MBMS Protocols and CODECs, European Telecommunications
Standards Institute TS 126 346, 2017.

[14] Advanced Television Systems Committee (ATSC), ATSC Candidate Standard:
Signaling, Delivery, Synchronization and error Protection (A/331), Advanced Television
Systems Committee (ATSC), 2017.

[15] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure Transport,”
Internet Draft, June 2017. https://tools.ietf.org/html/draft-ietf-quic-transport.

[16] M. Bishop, “Hypertext Transfer Protocol (HTTP) over QUIC,” Internet Draft, June 2017.
https://tools.ietf.org/html/draft-ietf-quic-http.

[17] C. Perkins, D. Stanley, W. Kumari and J. C. Zuniga, “Multicast Considerations over
IEEE 802 Wireless Media,” Internet Draft, 2017. https://tools.ietf.org/html/draft-perkins-
intarea-multicast-ieee802.

[18] Institute of Electrical and Electronics Engineers (IEEE), Local and metropolitan area
networks — Specific requirements — Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications — Amendment 2: MAC Enhancements
for Robust Audio Video Streaming, IEEE 802.11aa, 2012.

[19] Institute of Electrical and Electronics Engineers (IEEE), Local and metropolitan area
networks — Specific requirements — Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications — Amendment 8: IEEE 802.11
Wireless Network Management, IEEE 802.11v, 2011.

[20] A. Checko, H. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger and L.
Dittmann, “Cloud RAN for Mobile Networks—A Technology Overview,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 1, pp. 405–426, 2015.

[21] L. Pardue and R. Bradbury, “Hypertext Transfer Protocol (HTTP) over multicast QUIC,”
Internet Draft, February 2017. https://tools.ietf.org/html/draft-pardue-quic-http-mcast.

