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ABSTRACT 

High Dynamic Range (HDR) will soon be just as much about delivering great video 
experiences to tablets and smartphones as it is about delivering to the big UHD TV in the 
living room.  For video service providers, however, the challenges are different.  UHD HDR 
content is crafted with the big screen in mind.  As a result, the small localized highlights 
and spatial details of HDR content can be obliterated when it is scaled, filtered, and 
encoded using adaptive streaming protocols to fit handheld screens.  

This paper provides quantitative methods to optimize HDR for the second screen and 
adaptive bitrate services.  We provide methods to measure and mitigate distortions of 
overall HDR luminance variations as well and the localized highlights and spatial details 
that are unique and significant in each video frame.  A key take-away is that we provide 
methods to select the best combinations of bitrate and encoded resolution to use in multi-
resolution adaptive streaming of HDR content.   

INTRODUCTION 

Adaptive streaming is rapidly becoming a dominant method for distribution of television to 
all screens from the big screens in living rooms to smaller-screen smartphones and 
tablets.  At the same time, displays big and small are becoming much more capable of 
rendering the deep darks and bright highlights that make HDR (1,2) special.  Together, 
adaptive streaming combined with advanced display technologies can enable HDR to 
become a high-value second screen experience. 

Ideally, we would like to create a consistent HDR experience across all screens.  A 
challenge is that small screens tend to have lower resolution than big screens.  They also 
tend to be used more often at the edge of lower-bandwidth wireless networks.   

Adaptive streaming protocols compensate for these issues by making several variants of 
media content available to adaptive streaming clients.  The set of variants, often called an 
adaptation set, is made up of several representations of the original content at lower 
resolutions and at different bitrates.  Adaptive streaming clients select a variant from those 
available in the adaptation set that makes best use of the client’s bandwidth availability 
and rendering capabilities.  As bandwidth and other conditions fluctuate, the client can 
adapt by selecting different variants. 



          

The main advantage of adaptive streaming is smooth uninterrupted playback.  For HDR, 
however, there are potential negative side effects related to the loss of spatial detail and 
localized highlights when clients select lower-resolution lower-bitrate variants. 

The key question for service providers is this: Can we design and construct adaptation 
sets in such a way as to minimize HDR distortions and promote consistency across 
screens?  This paper provides methods to help achieve that goal.  This paper provides 
methods to quantify HDR distortions, take steps to mitigate those distortions, and select 
the best combinations of bitrates and resolutions to include in HDR adaptation sets. 

TEST SEQUENCES & PREPARATION 

In this study, we used the HDR Wide Colour Gamut (WCG) test sequences shown in 
Figure 1. These sequences were created by the “HdM-HDR-2014 Project” (3,4) to provide 
professional quality cinematic wide gamut HDR video for the evaluation of tone mapping 
operators and HDR displays. All clips are 1920x1080p24 and colour graded for ITU-R 
BT.2020 (ref. 5) primaries & 0.005-4000 cd/m2 luminance.  

 

Figure 1 - HDR Test Sequences Used in this Study 

We converted the original colour graded frames (RGB 48 bits per pixel TIFF files) to 
Perceptual Quantizer (PQ (ref. 6)) YCbCr v210 format (4:2:2 10 bit) using the equations 
defined in ITU-R BT.2020, ITU-R BT.1886 (ref. 7), and ITU-R BT.2100 (ref. 8).  

For each test sequence, we created 50 variants having different encoded resolutions and 
bitrates.  Of the 50 variants, 20 were raw uncompressed versions used to isolate the 
impact of different rescaling algorithms on HDR distortion.  The remaining 30 variants for 
each test sequence were compressed using High-Efficiency Video Coding (HEVC) for 
each combination of encoded resolution (1920x1080, 1440x1080, 1280x720, 960x540, 
720x540, and 640x360) and bitrate (10000, 3000, 1000, 300, and 100 kbps). All rescaling 
was performed in Matlab (9) using the imresize function. All compression was performed 
using command-line x265 (10) (main10 profile). 

OPTIMIZING ADAPTIVE STREAMING RESOLUTIONS & BITRATES FOR HDR 

HDR Distortion and Video Quality Metrics 

For non-HDR adaptive streaming, our industry has experience using objective video 
quality metrics (11,12) to help create consistency.  Commonly used objective video quality 
metrics such as Peak-Signal-to-Noise Ratio (PSNR), Mean-Squared Error (MSE), 
Structural Similarity Index (SSIM (ref. 13)), and Multiscale Structural Similarity Index (MS-
SSIM (ref. 14)) are useful and practical even if it can be argued that none are yet a perfect 
substitute for human eyes (15). 



          

For HDR, there is not yet an equivalent widely accepted and trusted objective video quality 
metric.  MSE, PSNR, SSIM, MS-SSIM by themselves are not sufficient for the range of 
luminance found in HDR video, nor do they adequately report the heightened significance 
of localized highlights and details in HDR content.  The development of HDR-aware 
metrics is progressing in academic and company labs (16-25), but they have not yet 
reached the level of maturity required for commercial television services. 

In this paper, we instead leverage well-known distortion metrics such as MSE and linear-
correlation coefficients but do so in a nuanced and focused manner that helps unveil HDR-
specific differences between original and encoded content. 

Decomposition of HDR 

Our approach to measuring HDR distortion begins with decomposing each HDR frame into 
a Spatial Detail signal and a Basal Image, as illustrated in Figure 2.  

 

Figure 2 – Decomposition of original HDR frame into Spatial Detail and Basal Image 

The method of calculating the Spatial Detail signal is in the Appendix and even more detail 
is in previous publications (26-30). In brief, the Spatial Detail signal can be thought of as 
the condensed essence of the original image.  It isolates the features and details that are 
unique to the original while minimizing statistically expectable characteristics that the 
original image shares with images as a statistical class.  

Images of natural and other complex scenes have an interesting statistical property: They 
have spatial-frequency magnitude spectra that tend to fall off with increasing spatial 
frequency in proportion to the inverse of spatial frequency (30). The magnitude spectra of 
individual images can vary significantly; but, as an ensemble-average statistical 
expectation, it can be said that “the magnitude spectra of images of natural and other 
complex scenes fall off as one-over-spatial-frequency.”  

The Spatial Detail signal is effectively the result of de-emphasizing the statistically 
expectable one-over-frequency characteristic.  As such, the Spatial Detail signal 
emphasizes the unique unexpectable details in an image.  



          

The Basal Image is obtained by simply subtracting the Spatial Detail image from the 
original HDR image.  As such, the Basal Image may be thought of as a special kind of low-
pass filtered version of the original HDR image in which the unique spatial details are 
selectively attenuated.  Although perhaps difficult to appreciate on the printed page, the 
Basal Image gives the visual sensation of being out of focus. 

One way to think of the Basal Image is that it represents the overall contrast and 
luminance range of the HDR image, whereas the Spatial Detail signal can be thought of as 
representing localized contrast and luminance variations. 

Spatial Detail Distortion is Most of the Total HDR Distortion 

An advantage of decomposing each HDR frame into a Spatial Detail signal and Basal 
Image can be appreciated by examining the relative contribution of each to total HDR 
distortion. 

Mean-Squared Error and PSNR are common and equivalent metrics of distortion.  (PSNR 
is proportional to the logarithm of MSE.) MSE is the average over all pixels of the squared 
difference between an original image and a corresponding encoded variant.  

MSE values calculated for five encoded resolutions and four candidate rescaling 
algorithms are shown in Figure 3.  The candidate rescaling algorithms are nearest-
neighbour interpolation, bilinear interpolation, bicubic interpolation, and lanczos3 
resampling.  The MSE values shown in Figure 3A are the average values of 15-second 
segments and of all test sequences. Lower MSE values indicate that the rescaled variant 
is less distorted from the original in terms of squared-error (and thus PSNR). The data 
show that lanczos3 resampling provides the lowest MSE values for all resolutions and 
should thus be considered the best choice in constructing adaptive streaming variants.  If 
other considerations such as processing demands are significant, bicubic interpolation can 
deliver nearly as good results.   

 

 

Figure 3 – Mean-Squared Error for Different Rescaling Algorithms (A) and the Relative 
Contribution of the Spatial Detail signal and Basal Image to Total MSE (B). 

Total MSE can be thought of as the sum of the Spatial Detail MSE by itself, the Basal 
Image MSE by itself, and a contribution from the covariance of Spatial Detail signal and 
the Basal Image. 



          

The data in Figure 3B show that the Basal Image MSE is a small fraction of the total MSE.  
The Basal Image contribution to total MSE increases with progressively more aggressive 
downscaling, which indicates that rescaling progressively distorts the underlying smoothly-
varying luminance of the encoded video. Yet, even for the 3-fold downscaling from the 
original 1920x1080 to 640x360, the error associated with the Basal Image is only about 
10% of the total error.  Most of the total error is attributable to distortion of the Spatial 
Detail signal (approximately 80% for 1440x1080 and 60% for 640x360). (The data shown 
in Figure 3B are for lanczos3 resampling.)  

Spatial Detail and the Basal Image also make different contributions to total MSE for 
HEVC-compressed variants, as illustrated in Figure 4.  At high bitrates, the Spatial Detail 
signal (A) contributes ~60% and the Basal Image (B) contributes ~10% of the total MSE.  
At very low bitrates (100 kbps) the relative contributions become more equalized with 
Spatial Detail and the Basal Image both contributing ~35%.   

 

Figure 4 – Relative Mean-Squared Error for HEVC-Compressed Variants 



          

Note that the relative contributions from Spatial Detail and the Basal Image tend to be 
complimentary.  For example, variants with an encoded resolution of 960x540 maximize 
the Spatial Detail contribution (C) and minimize the Basal Image contribution (D) for almost 
all bitrates. Variants with higher and lower encoded resolutions tend to reduce the 
contribution from Spatial Detail and increase the contribution from the Basal Image. 

Using Basal Image MSE to Exclude Low Video-Quality Variants 

The size of the contribution of the Basal Image to total MSE can be used as an 
acceptance threshold to determine which combinations of bitrate and encoded resolutions 
should be considered for exclusion from an adaptation set.  A large contribution by the 
Basal Image to total MSE, above 20% in our experience, is associated with very poor 
visual quality.  A large contribution means that the major underlying contrast variations of 
the HDR content have been significantly and very noticeably distorted. 

The data in Table 1 shows that the relative contribution of the Basal Image to total MSE 
can also be used to optimize selection of permissible variants in a content-adaptive 
manner.  The red cells in the table denote combinations of bitrate and encoded resolution 
to be excluded when designing adaptation sets.  The threshold used in this example is 
0.20.  

Table 1 – Setting a Threshold for Video Quality Using Basal Image MSE 

 

Using Total MSE to Choose Resolution & Bitrate Combinations for Adaptation Sets  

The data in Figure 5 illustrate an existing method of selecting which combinations of bitrate 
and encoder resolution should be included when designing adaptation sets.  The 
methodology is based on the ATIS-0800061(31) standard, which was developed as a joint 
effort by the Video Services Forum and the IPTV Interoperability Forum.  The core concept 
is illustrated in Figure 5A.  High-resolution representations of original content have better 
video quality (lower MSE) at high bitrate than do low-resolution representations. On the 
other hand, video quality deteriorates faster with bitrate for high-resolutions 
representations than for low-resolution representations. As a result, low-resolution 
representations have better video quality at low bit rates than do high-resolutions 
representations.  Finding the points at which the high-resolution curves cross the low-
resolution curves (upward arrows) provides a systematic way to determine which encoded 
resolution provides the best video quality at each bitrate.  The selection process is 
illustrated in a different way in Figure 5B.  For any set of possible encoded resolutions, 
there is one that results in the minimum total MSE at each bitrate (downward arrows). 

100 300 1000 3000 10000 100 300 1000 3000 10000

1920x1080 0.38 0.21 0.16 0.13 0.11 0.31 0.25 0.17 0.14 0.12

1440x1080 0.30 0.17 0.12 0.10 0.08 0.33 0.23 0.16 0.13 0.10

1280x720 0.20 0.12 0.08 0.07 0.05 0.35 0.20 0.15 0.12 0.09

960x540 0.19 0.11 0.08 0.06 0.04 0.28 0.19 0.14 0.11 0.07

720x540 0.19 0.13 0.09 0.08 0.07 0.27 0.19 0.14 0.11 0.08

640x360 0.20 0.16 0.14 0.13 0.13 0.27 0.19 0.14 0.12 0.09

Resolution

Relative Contribution of Basal Image to Total MSE

Bitrate (kbps)

bistro carousel fireworks



          

Table 2 summarizes the results for the example shown in Figure 5.  The green cells 
indicate the bitrate and encoded resolution combinations that minimize total MSE and 
might thus be considered for inclusion in the adaptation set.

 

Figure 5 – Designing an Adaptiation Set Based on Mimimum Total Mean-Squared Error 

Table 2 – Minima of Total Mean-Squared Error 

  

Using Spatial Detail Correlation to Choose Resolutions & Bitrates for Adaptation Sets  

Mean-squared error by itself is known to be a convenient but not very accurate predictor of 
human opinions of video quality, particularly regarding HDR content. Fortunately, the 
methodology illustrated in Figure 5 is not restricted to MSE.  It can be applied to other 
objective measures of HDR distortion or video quality. 

We applied the methodology to a metric that describes how well correlated the encoded 
Spatial Detail is with the original Spatial Detail.  The metric we use is the coefficient of 
determination, R2, the square of the Pearson correlation coefficient, R, (see ref. 33). 

In this study, we calculated R2 values using the average code values in the encoded frame 
compared to the corresponding code values in the original frame.    The expectation is that 
the average code value of the encoded frame would be the same as the corresponding 
code value of the original frame.  Mismatches are a manifestation of a lack of correlation 
and result in a lower value of R2, which has a range of 0 to 1.  

100 300 1000 3000 10000

1920x1080 1248 823 584 502 388

1440x1080 1308 818 613 532 416

1280x720 1235 794 645 572 463

960x540 1093 806 672 602 509

720x540 1135 865 736 669 591

640x360 1251 1003 888 829 775

Resolution
Bitrate (kbps)

Total Mean-Squared Error



          

(A note on calculating average code values – Each average code values in the encoded 
frame was calculated by finding all the pixel locations in the original frame that have a 
specific code value, for example, 312 out the possible range of 64 to 940 for 10-bit 
encoding. The encoded code values for the corresponding pixel locations tend to have a 
distribution of values because of compression and scaling.  We use the average over the 
distribution. The resulting average encoded code values were compared to the original 
code values to calculate R2 values.  The R2 values in this study are thus a measure of the 
correlation between actual mean values and expected values.) 

The data in Figure 6A illustrate the correlation between original luma code values and 
encoded luma code values for an encoded resolution of 1920x1080 and bitrates from 100 
kbps to 10 Mbps.  The encoded values display an almost perfect correlation with the 
original values:  The encoded values fall along a straight line with a slope of 1.  The 
exception is for dark regions having code values below ~200.  The corresponding dark 
regions in the encoded frames tend to brighter.  In other words, HEVC compression is 
causing an elevation of the average black levels of HDR content.  The amount of 
brightening increases with decreasing bitrate.  (We have been investigating the elevation 
of blacks in HEVC-compressed video.  It appears to be a result of low-pass filtering of 
textures and film grain by the internal HEVC image processing operations.)  

 

 Figure 6 – Correlations of Luma Code Values and Spatial Detail Signals 

The data in Figure 6B show the correlations of the original and encoded Spatial Detail 
signals for the corresponding luma correlations shown in Figure 6A.  The encoded Spatial 
Detail signals display weaker correlations with the original Spatial Detail signals compared 
to the corresponding luma signals.  There is a general overall linear relationship between 
encoded and original Spatial Detail, but there are four significant differences worth noting.  
First, there is much greater variation around the straight-line fitted using least-mean-
squared regression (shown as dashed lines).  Second, the magnitude of the variation 
around the fitted straight-line increases with decreasing bitrate. This indicates that Spatial 



          

Detail correlation decreases with decreasing bitrate. Third, the slope of the fitted straight-
line decreases with decreasing bitrate. This indicates that localized contrasts of textures 
and HDR highlights are diminished with decreasing bitrate. Fourth, the slope of the 
correlation is flatter neat the origin (small Spatial Detail values) than for large Spatial Detail 
values.  This indicates that low contrast textures and details (such as those typically 
associated with faces and background textures) are systematically impacted more 
severely by HEVC compression than are high contrast HDR textures.  

The variation of the data around the best-fitting least-mean-squared regression line 
(dashed lines) is quantified by the value of R2, which measures the “goodness of fit” 
between the fitted straight line and the actual data. 

Table 3 summarizes the goodness-of-fit, R2 values, for the bitrate-resolution combinations 
used in this study.  The cells highlighted in green indicate which encoded resolution 
maximizes the goodness-of-fit for each bitrate. In other words, the green-highlighted cells 
correspond to the bitrate and resolution combinations that maximize the correlation 
between encoded Spatial Detail and original Spatial Detail.  These are the bitrate-
resolution combinations that best preserve the textures, highlights, and local contrast 
variations in HDR video.  

Table 3 – Maxima of Spatial Detail Correlation (R2) 

 

Table 4 illustrates the use of Spatial Detail correlation to choose the best variants to 
include in HDR adaptation in a content-aware manner.  Note that the carousel_fireworks 
test sequence benefits from lower resolution variants than does the bistro test sequence.  
The carousel_fireworks test sequence is more challenging because it has a wider range of 
luminance and more motion.   

Table 4 – Choosing Bitrate & Resolution Combinations based on Spatial Detail Correlation 

 

100 300 1000 3000 10000

1920x1080 0.900 0.933 0.946 0.966 0.983

1440x1080 0.893 0.939 0.949 0.968 0.982

1280x720 0.919 0.942 0.955 0.965 0.976

960x540 0.903 0.934 0.946 0.955 0.962

720x540 0.892 0.924 0.935 0.943 0.950

640x360 0.869 0.897 0.902 0.909 0.914

Bitrate (kbps)
Resolution

100 300 1000 3000 10000 100 300 1000 3000 10000

1920x1080 0.958 0.987 0.995 0.997 0.999 0.841 0.848 0.878 0.942 0.985

1440x1080 0.956 0.990 0.995 0.997 0.998 0.848 0.879 0.898 0.956 0.989

1280x720 0.979 0.990 0.993 0.995 0.996 0.841 0.901 0.932 0.966 0.986

960x540 0.963 0.985 0.987 0.988 0.988 0.860 0.906 0.927 0.948 0.968

720x540 0.966 0.983 0.988 0.988 0.989 0.866 0.916 0.931 0.946 0.960

640x360 0.950 0.966 0.967 0.967 0.968 0.869 0.912 0.920 0.927 0.929

Resolution
bistro carousel_fireworks



          

DISCUSSION 

In this paper, we provide methods to quantify HDR distortions and take steps to mitigate 
those distortions by selecting the best combinations of bitrates and resolutions to include 
in HDR adaptation sets used in adaptive streaming services. 

A key part of our approach is to decompose HDR video into two components.  A Basal 
Image contains the overall luminance and contrast variations in HDR video.  A Spatial 
Detail signal contains the localized luminance and contrast variations. 

We showed that most of the distortion in encoded HDR content is a result of distortions of 
the Spatial Detail signal.  On the other hand, the mean-squared error associated with 
distortions of the Basal Layer is a useful metric with which to set minimum-video-quality.  
We propose that a good video-quality acceptance-threshold is the point at which the Basal 
Image contributes 20% of the total mean-squared error between the original and encoded 
HDR videos. 

We also propose that the correlation between the encoded and original Spatial Detail is a 
useful metric by which to select the best combinations of bitrate and resolution for 
inclusion when designing adaptation sets.  This approach maximizes the similarity of the 
local contrasts and highlights between encoded and original HDR videos.  These local 
contrasts and highlights add significant impact to HDR video and represent a large part of 
the content creator’s original intent. 

APPENDIX – SPATIAL DETAIL AND BASAL IMAGE 

The method of creating the Spatial Detail signal can perhaps best be understood by 
thinking of an image in terms of spatial frequency spectra as illustrated in Figure A1 (only 
the luma channel is shown).  Any 2-dimensional array of pixel values can also be 
represented without loss of information as the product of a magnitude spectrum and a 
phase spectrum in 2-dimensional spatial frequency space. Spatial-frequency spectra can 
be obtained from an image pixel array by performing a 2-dimensional Fast Fourier 
Transform (FFT2). The pixel array can be recovered by performing a 2-dimensional 
Inverse Fast Fourier Transform (IFFT2). FFT2 and IFFT2 are well known signal processing 
operations that can be calculated quickly in modern processors. 

 

Figure A1 - Representation of a Video Frame in Terms of Spatial Frequency 



          

 

 

Figure A2 - Method of Calculating the Spatial Detail Signal 

The Spatial Detail signal is calculated as illustrated in Figure A2. First, the magnitude (B) 
and phase spectra (C, shown twice) are calculated from the image pixel array (A). Next, a 
predetermined archetype of the statistically expectable one-over-frequency magnitude 
spectrum (D) is divided into the actual magnitude spectrum to produce a statistically 
weighted magnitude spectrum (E). Third, the statistically weighted magnitude spectrum is 
combined with the actual phase spectrum (C). Finally, a 2-dimensional Inverse Fast 
Fourier Transform is applied to produce a pixel array that we call the Spatial Detail signal 
(F). 
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