
          

 

INTEGRATING FORENSIC WATERMARKING INTO ADAPTIVE 
STREAMING WORKFLOW 

Alexander Giladi 

Comcast, USA 

ABSTRACT 

Per-session forensic watermarking is a process of embedding a unique 
identifier for each streaming video session into the video content. This 
identifier will remain in this content, even if the content undergoes multiple 
cycles of camcording, filtering and transcoding. Forensic watermarking in 
adaptive HTTP streaming service is a two-step process, and thus the 
standard workflow is altered in two disjoint points. In the first step, pre-
processing, some segments are duplicated and imperceptibly marked, 
creating two variants of the same segment. These variants are perceptually 
identical, but contain different bits of information. At the second step, a unique 
sequence of A and B variant segments is generated per each session, and 
this list is translated into the manifest format of choice, such as DASH MPD 
or Apple HLS. This stage is referred to as embedding. This paper will discuss 
capacity, storage and visual quality trade-offs in selecting a workflow stage at 
which pre-processing is performed. The two widespread options are (1) a pre-
processing step in baseband video, prior to encoding or (2) encoder 
independent in the compressed-domain. This paper discusses and quantifies 
ways of reducing capacity and the storage impact of forensic watermarking in 
both approaches. It will further explore robustness and security implications of 
the two approaches with respect to different potential vulnerabilities, such as 
collusion. Lastly, this paper will cover approaches for enabling per-session 
embedding compatible with existing DVB and DASH-IF compliant MPEG 
DASH clients.     

 

INTRODUCTION 

Digital rights management (DRM) and conditional access systems (CAS) are often seen as 
the only content security mechanism needed for premium content. However, the main goal of 
a DRM system is to prevent unauthorized playback of the content. It is not intended to protect 
from unauthorized distribution of the presented content. Content can be recorded at playback 
from HDMI output or by camcording. Content can also be obtained via a DRM failure, such as 
a key compromise or a wholesale compromise of the DRM system.   



          

 

When unencrypted content is distributed, rights owners have little or no visibility into its 
distribution. Forensic watermarking allows precise identification of the viewing session from 
which this content was obtained in its unencrypted form. This is why watermarking is 
increasingly viewed as an important content security mechanism for premium content, such 
as early release and UltraHD movies. The MovieLabs Enhanced Content Security 
specification explicitly requires robust forensic watermarking as a part of its content security 
suite of technologies. 

 

Watermarking embeds identifiable information (watermark identifier) into video signal in a way 
that (a) is imperceptible to a human viewer, (b) allows precise identification of each viewing 
session, and (c) is robust enough to survive multiple iterations of transcoding, image 
processing, and camcording, while maintaining its veracity.  

There are several technical approaches to watermarking. A more traditional one-step 
watermarking embeds a single watermark identifier into a single complete encoded asset. 
This baseband video modification step (watermark pre-processing) can occur either at the 
server side (i.e., at the content preparation stage) or at the client side in a secure video 
pipeline. Unfortunately, both one-step approaches are ill-suited for per-session forensic 
watermarking.  

When per-session precision is needed, the server-side one-step approach will result in a 
single asset encoding per session. This approach results in extreme overheads from both 
storage (asset per customer) and processing (encode per session) standpoints, and is not 
practical at scale.   

Client-side one-step watermarking scales extremely well, as all the processing happens on 
decoded baseband video within the secure video pipeline during playback. This requires a 
tight integration with both hardware and DRM vendors, which is feasible for the set-top box 
distribution model. Device heterogeneity makes this model much harder to achieve in the 
adaptive streaming world. Significant device reach implies support for a rapidly changing mix 
of devices, chipsets and DRMs. Not all of these devices will have hardware-level support for 
watermarking. 

 

An alternative two-step watermarking approach is based on an observation that in adaptive 
streaming media segments are the minimal playable entities. Every asset is conceptually a 
concatenation of media segments, defined in the manifest. Hence each media segment can 
be treated as a single bit, and for each segment, two encodes (variants) are prepared. They 
are typically referred to as A and B, but are easier to visualize as ‘0’ and ‘1’ variants. More 
formally, 2N variants are needed to express N bits per segment, but N=1 is commonly used. A 
manifest manipulator will then create a unique manifest per session, and generate a unique 
sequence of A/B variants per each session on the fly. 



          

 

The two-step approach is uniquely suited for adaptive streaming deployments. Server-side 
one-step watermarking will require a separate encode for every single viewing session. This 
means that its computational and storage complexity is linear to the number of viewing 
sessions of an asset. The first step of a two-step approach at most doubles the computational 
and storage overhead, but this overhead is constant and does not depend on the number of 
viewing sessions. The second step, generation of a unique manifest, is linear to the amount of 
sessions, but its runtime is negligible, especially compared to other delays inherent in starting 
a viewing session.  

The overhead of the two-step approach is, in our opinion, a small price to pay for a device-
independent watermarking technology, and this approach is currently best suited for adaptive 
streaming deployments from the technological standpoint. This paper will review several 
issues related to integration of two-step watermarking into an adaptive streaming deployment.  

 

PREPROCESSING CONSIDERATIONS 

Pre-encoder domain vs compressed domain  

Watermark preprocessing is a transformation of a single raw video input into two raw video 
outputs. Preprocessor typically modifies only a small percentage of frames.  

The most natural place for this preprocessing to occur would be just prior to the encoder, as a 
part of a preprocessing filter chain. Watermarking algorithms are robust enough to withstand 
resizing, therefore in multi-rate multi-resolution encodes, watermark preprocessing can run 
before resizing. This way watermark preprocessing runs once per asset, rather than once per 
each resolution.  

Watermark 
Preprocessor

Encoder

Encoder

Packager

A

B

A

B

CDNA+B

 

Figure 1. Pre-encoder preprocessing 

The obvious downside of the pre-encoder approach is the need for encoder integration, which 
may be a per-vendor effort. A much easier approach is doing “compressed domain” 
preprocessing, where preprocessing is applied to a stream, which is already compressed. 
Typically, this involves decoding the complete segment, preprocessing and encoding the 
changed part. Since only a small number of frames need to be modified by the preprocessor, 
many implementations make a shortcut by altering re-encoding only non-reference B frames. 



          

 

By definition a non-reference frame is not used for prediction by any other frame, so any 
change within a non-reference frame would not propagate further.  

Encoder I b bB PA

I b’ bB P

Decoder Preprocessor Encoder

Packager CDNA+BA

B

 

Figure 2. Compression-domain preprocessing with non-reference frame marking 

There are several methods to weaken compressed domain watermarking. If the non-
reference frame approach is taken, removal of a non-reference frame would completely 
remove the watermark. In case of premium HFR (high frame rate) UltraHD content, removal 
of all non-reference B frames will not render content unwatchable: in a typical IbBbP1 GOP 
(group of pictures) structure, removal of non-reference B (‘b’) frames will only halve the frame 
rate.  Non-reference B frame removal can be achieved even in encrypted domain when used 
with ISO-BMFF (ISO Base Media File Format) and Common Encryption (CENC). CENC only 
encrypts parts of the VCL (video coding layer) NAL units, so identifying non-reference B 
frames from the unencrypted parts of the segment is fairly straightforward. This way, 
watermark removal in case of non-reference B approach can be achieved in encrypted 
domain in man-in-the-middle scenarios. The use of HLS full-segment AES-128 encryption 
prevents this approach in encrypted domain. Regardless of container format, this approach is 
trivial once content is available in unencrypted form (e.g. due to a key compromise). 

A different weakness inherent in the non-reference B frame approach is reduced resilience to 
collusion. Using several encoded copies of a watermarked asset, it is possible to identify 
differing non-reference frames and remove only them. This removal can be trivially achieved 
in either encrypted or unencrypted domain. A slightly more complex version of this approach 
can be used to weaken the watermark from any high-quality capture (e.g. from HDMI). It is 
possible to measure PSNR (peak signal to noise ratio) between each pair of aligned frames 
from different sessions. This PSNR is expected to be very high across identical frames, thus 
an anomalously low PSNR difference between two aligned frames is a strong indicator of a 
watermarked frame. Since the watermarked frame is not used as a reference in other frames, 

                                            

1 The IbBbP notation indicates an IDR (‘I’) frame followed (in presentation order) by a non-reference B 
(‘b’) frame, a reference B frame (‘B’), another non-reference B, and, eventually, a P (‘P’) frame.  



          

 

the pattern is very easy to identify. Once a frame is identified as a watermarked it can be 
dropped or replaced. 

A more robust alternative to the non-reference approach is using reference frames (e.g. intra-
coded frames) and re-encoding the complete segment. While strengthening the overall 
robustness, the approach results in major or complete re-encoding of the GOP. The results 
are both an inevitable loss of video quality and very significant increase in computational 
complexity. Since preprocessing is done post-encoder, re-encoding is needed per each 
encoder video output (i.e., per each bitrate).  

The weaknesses identified above may make compressed domain approach less suited for 
threat models in which collusion or access to recorded media segments are likely.  

 

Tightening encoder integration 

 

Figure 3. Possible workflow for multi-rate video on demand scenario 

When watermark preprocessing is a part of the pre-filter chain, the preprocessor does not 
have any information regarding segment boundaries. It needs to know segment boundaries in 
order to know which segment is being modified.  

Segments in adaptive streaming deployments always contain an integer number of GOPs. 
When shorter segments are used (e.g. 2 sec), a GOP is equivalent to a segment. In many 
cases, constant GOP duration is used in the context of adaptive streaming. This allows a 
shortcut where segment boundary can be derived from the frame count. For example, in  
24fps content, 2-sec fixed GOPs imply that every 48th frame is a segment border.  



          

 

Variable GOP duration allows better video quality, as it favors putting intra frames at scene 
change boundaries rather than at fixed intervals. Once variable GOP and segment durations 
are used explicit information on segment boundaries is beneficial. 

In the vast majority of cases, video on demand is encoded using a two-pass encoding 
process. When two-pass encoding is used, the first pass produces analysis information, 
which will be used as a basis for final rate control and mode decisions by the encoder at the 
second pass. The most basic first-pass decision is determining frame type.  

Frame type decision determines IDR locations, which, in turn, implicitly determine segment 
boundaries. This way the preprocessor can relatively safely assume that a segment it needs 
to watermark is started by an IDR frame. With that said, the most robust approach would be 
providing explicit segment boundary information to the preprocessor out of band. 

 

Storage overhead 

The simplest way of storing two segment variants is by storing them as two separate 
segments. While this approach has the biggest storage overhead, it also keeps CDN 
distribution simple: any published segment is available through the CDN, and there is no need 
for any edge processing. 

Some watermarking approaches are resilient enough to create variants for some percentage 
(e.g. 20%) of the segments. There is a trade-off between the time needed for extraction of the 
watermark identifier and the percentage of variant segments. The higher the percentage of 
marked segments, the faster the watermark identifier can be recovered. The lower this 
percentage is, the lower the overhead is in terms of encoding and storage, and the longer it 
takes to recover the identifier.  

A more efficient approach is storing only differing frames. The fact that only a few frames in a 
segment are modified makes this approach more efficient, especially when all of them are 
non-reference B. In this case, storage overhead may even be lower than 5%.  This approach 
was specified in ISO/IEC 23001-12, an international standard defining carriage of variant 
samples for ISO-BMFF files. MPEG is currently extending this specification to cover carriage 
of variant samples in MPEG-2 transport streams as well.  

Obviously, segments which contain both A and B variants cannot be transmitted directly to 
the streaming client. Just-in-time edge processing is needed to remove one of the two sample 
variants for each segment request. While the processing itself is straightforward, there may 
be an impact on the overall scalability of the system. 



          

 

EMBEDDING CONSIDERATIONS 

CDN

Manifest Manipulator

Streaming  ClientMedia segments

Unique manifest
Manifest request

w/ unique session ID

 

Figure 4. Embedding step 

Watermark identifier space 

The second step of a two-step forensic watermarking workflow is embedding – generation of 
a unique session-specific segment sequence in response to an opaque session identifier. If a 
sequence of segments is viewed as a sequence of bits, longer bit sequences require a longer 
amount of playback time to recover the sequence completely.  Thus, use of reliably unique 
stateless session identifiers such as UUIDs and cryptographic hashes may negatively affect 
the overall system performance. On the other hand, short identifiers may result in uniqueness 
issues or require tight synchronization to keep track of assigned identifiers.  

If we look at the identifier space of a viewing session, we can clearly partition it into at least 
four domains: asset, time, subscriber and device. At the very least, asset identifier is not 
expected to change across any viewing sessions of a single asset. This suggests a hybrid 
approach: use of a server-side one-step watermarking approach to embed an asset 
watermark, followed by a two-step process creating the media segments. This means that 
asset identifier is encoded identically into every variant, thus a smaller identifier space needs 
to be expressed via a unique segment sequence. This reduction of identifier space is 
inexpensive – it has neither bandwidth nor storage overhead, and its impact on encoding time 
should not be overly significant.  

 

DASH integration 

The final result of the embedding step is a session-specific unique sequence of segments. In 
most products, this is described as a manifest generation; however, conceptually embedding 
can be thought of as a function returning a string of variant decisions (e.g. “ABBBAAB”). This 
sequence can often be obtained on a per-segment (“which segment n do I provide for session 
42?”) or per-session (“what is the unique sequence provided to session 42?”) basis. 



          

 

 

The simplest and most straightforward integration happens when discrete segments are used. 
In this case, each segment is addressable by a URL, and the variant decision string is 
translated into a unique sequence of URLs. The same sequence will be translated into all 
variants (HLS) or into all representations in an adaptation set (MPEG DASH) of the same 
content.  

 

Two-step watermarking can be vulnerable to URL guessing. Guessing the URLs of the A/B 
variant segments makes is possible to decide which variant to download. This approach is 
feasible when segment naming convention is predictable – e.g. if there is a 
“segment_0042A.ts” and “segment_0043B.ts”, it is relatively simple to attempt to download 
segment_0043A.ts” instead. URL guessing is trivially avoided by using randomized segment 
URLs, e.g., by embedding UUIDs or salted cryptographic hash into file names (and, 
consequently, into segment URLs). This way, using GUIDs, the segment names above can 
become “24dcdceb-fad7-4f90-829b-659ade34255e.ts”, “23759ef0-e216-4799-b57a-
7da6c2fb7133.ts”, and “dca62dd8-1201-4088-b51b-fb3987343faa.ts” 

 

This manifest embedding approach maps well into the way HLS works, as m3u8 playlists list 
each segment individually. It can work the same way with MPEG DASH, as DASH has a 
SegmentList mode, which is essentially a playlist per representation.  

 

Unfortunately, the SegmentList approach is more helpful for claiming DASH support (“we 
support Main Profile of DASH”) than for actual integration with an existing DASH ecosystem. 
The SegmentList addressing mode is not supported in commonly implemented profiles (Live 
and On Demand) and in specifications by bodies such as DASH-IF, DVB and SCTE. This 
means that support by commercial DASH ecosystem is not guaranteed. 

 

From the technical standpoint SegmentList is very inefficient. The generated MPD has to list 
all segments of all representations in a single XML file (as opposed to multiple text files in 
HLS). Having tens of thousands of XML elements (50K elements is a reasonable number for 
a two-hour asset with 14 representations and 2-sec segments) results in large manifest sizes 
and longer XML processing times. Moreover, SegmentList addressing sacrifices one of the 
major strengths of DASH – templates.  

 

DASH templates make it possible to predict a URL of a segment based on a naming 
convention, rather than list all segments explicitly. This is extremely efficient when predictable 
naming conventions are used. For example, instead of explicitly listing 
“segment_00001.mp4”, “segment_00002.mp4”, “segment_00003.mp4”, and up to 



          

 

“segment_99999.mp4”, DASH templates let one list “segment_$Number%05d$.mp4”. This 
looks and works like a printf statement.  

The problem with DASH templates and watermarking is lack of predictability in segment 
names.  There are two per-segment substitution variables defined in the DASH specification: 
$Number$ and $Time$. $Number$ is incremented by one for each segment, and thus is 
unsuitable for our purposes. $Time$ represents precise segment start time, and allows 
specification of names on a per-segment basis.  

Precise time in the $Time$ variable is expressed in ticks of a clock defined in the DASH MPD. 
This clock is only used for segment download – segment playback is controlled by the time 
expressed in the segment itself. This allows use of a very high precision clock, with its lower 
bits used to express the variant. For example, in case of 24fps content and 2-sec fixed-
duration segments, 1Hz clock suffices, and frame precision requires a 24Hz clock.  

In the example above, it is possible to use a 24KHz clock to express the same timestamps. At 
the very least, the timestamps would be 1000 clock ticks apart. This 1000-tick space can be 
used to express variant: for example, variant A can be defined as always starting at its real 
start time, and variant B can start 1 ms later. Thus, variant A segments can be 
segment_000000000.mp4, segment_000480000.mp4, while variant B segments will be 
segment_000000001.mp4 and segment_000480001.mp4. At the point when variant B is 
inserted, segment duration can be adjusted to reflect the “new” start time. This approach 
allows compatibility with MPEG DASH Live profiles and, consequently, DASH-IF, DVB and 
SCTE. The latter makes it possible to use off-the-shelf DASH clients and make minor 
modifications to manifest manipulator. 

The 0ms and 1ms offset is very easy to guess, so it would be prudent to randomize the 
offsets. 

 

The previous discussion focused on use of multiple segments. Especially in case of MPEG 
DASH, storing an asset as a single file (single segment) and accessing byte ranges within it 
(subsegments in DASH terminology) is a very common implementation for video on demand. 
This approach is codified in the VOD profile of MPEG DASH. In case of DASH, the byte 
ranges appear in a per-representation index (`sidx`), which is downloaded by the client prior 
to the playback start. 

 

Byte range addressing is problematic in the context of two-step watermarking. When variant A 
and variant B are encoded, at least some access units will always have different sizes. This 
implies different segment sizes of two variants of the same segment. The major issue here is 
that after the first variant switch, byte ranges no longer be match due to differing subsegment 
sizes. Let us assume variants A and B of an ith subsegment have sizes SZA(i) and SZB(i). For 
i=2 and a string “AA”, the 3rd subsegment starts at byte offset SZA(0) + SZA(1), while for a 
string “AB”, the subsegment will start at the offset SZA(i) + SZB(i). This quickly becomes 



          

 

intractable, as byte range requests will quickly become unique per client, and will almost 
never correspond to byte ranges in the actual encoded asset.  

 

A simple fix to enable use of byte range addressing is padding variant subsegments to make 
them have identical sizes. This can be achieved (e.g., by inserting additional SEI messages). 
In order to avoid giving away the fact that variants exist for the same subsegment or, worse, 
identifying which subsegment corresponds to A or B variants, all segments should be padded, 
including those where B variant does not exist.  This padding will result in equal sizes, and 
thus byte ranges will match across all unique combinations of variants. However, the padding 
approach we described creates a different problem: byte range requests will be identical 
regardless of the variant request. This renders the manifest manipulation approach useless.  

 

An alternative to manifest manipulation is a variant decision at the CDN edge for each 
segment request. A client request will reach a transparent proxy at the edge, which will make 
a per-segment variant decision for a given session. The proxy will then return a subsegment 
from the corresponding variant. On one hand, this approach significantly impacts system 
scalability by requiring per-request processing. On the other hand, this approach makes it 
possible to work with byte ranges; moreover, it hides the very existence of watermarking from 
the streaming client. An additional consequence can also be reduction in storage – only 
differing samples or segments need to be stored, as the added cost of just-in-time 
repackaging is relatively small. 

SUMMARY 

In this paper, we provided a brief overview of considerations for integrating forensic 
watermarking into operators’ high-value content offerings. We showed why the two-step 
approach is the optimal approach to forensic watermarking in context of client device 
heterogeneity.   

We showed the implications of frame type selection, especially when collusion is used to 
weaken the watermarking, and concluded that approaches relying on non-reference frames 
are less desirable from both security and visual quality aspects. 

We further discussed trade-offs between storage and just-in-time format conversion when 
serving watermarked segments.  

We further discussed the size of watermark identifier space. 

Lastly, we addressed the issues of integrating two-step watermarking with DASH players 
supporting Live and VOD profiles of MPEG DASH. We showed that this integration can be 
done securely and efficiently.  

We hope this paper will help solution architects within the industry who are considering 
implementing forensic watermarking.  



          

 

 


