

AN ARCHITECTURE FOR CLOUD-BASED IP VIDEO
PRODUCTION TOOLS

C. Northwood, R. Wadge

BBC Research & Development, UK

ABSTRACT

Increasing use of IP networks in video production environments opens up
many new possibilities. One of the benefits is that it allows us to apply
architectural patterns from enterprise IT to the domain of broadcast and
media production. This paper introduces a software system architecture
that is being used by BBC R&D for development of its cloud-based media
production tools. This architecture proposes a set of core functionality and
separates the concerns of user interfaces for manipulating media and the
actual processes which transform media. This is achieved through the
definition of Application Programmer Interfaces (APIs) and protocols for
this functionality, independent of the underlying implementation of the core
and tools, building on broadcast industry open standards. It also explores
how the in-development system was integrated with the BBC’s IT estate,
and explains how authentication, authorisation and security have been
addressed.

INTRODUCTION

The shift towards the use of IP networks at the core of production facilities brings a wealth
of opportunities for redefining production and broadcast operations. To an increasing
extent, infrastructure and workflow can be defined in software rather than hardware, and if
properly architected, can enable systems that integrate off-the-shelf and bespoke
components to fulfil the workflow requirements of an individual broadcaster. Architectures
built on a foundation of generic IP networks are well understood in the IT community, and
new broadcast infrastructure can benefit from this established body of knowledge.

Files have directly replaced tapes in most current non-live media production, but the
resulting workflows often do not exploit the potential flexibility of networked media. In
particular, interoperability of non-media data and metadata and the ability to trace
production ancestry as file-based content passes through different stages and tools in the
production process can be challenging.

The Advanced Media Workflow Association (AMWA) has recently published a family of
Networked Media Open Specifications (NMOS) (1), which address some of the limitations
of file-based workflows. These specifications take the data models and approaches
outlined by the Joint Task Force on Networked Media’s (JT-NM) Reference Architecture
(2) and realise them using design patterns widely adopted in modern IT systems, such as

Representational State Transfer over HTTP (REST) as defined by Fielding (3). The most
well-known use of REST is that of the world wide web, where individual web browsers
make requests to web servers to access web pages, but its application to APIs for
machine-to-machine communication has become the dominant pattern of web services
today. RESTful services benefit from simplicity, extensibility, discoverability and scalability
as they replicate the structure and semantics of the world wide web.

AMWA NMOS encourages components that implement a single service, such as
managing connections for a specific device, with a well-defined API, in line with trends in
IT towards microservices in a service-oriented architecture (4). Although the concept of a
microservice is loosely defined, it can be thought of as a service that tackles exactly one
problem. This is equivalent to the concept of the Single Responsibility Principle as
described by Martin in Object Oriented Design (5) but at a service level. Systems with
complex behaviour can be built by composing together microservices in a flexible, modular
way.

A key feature of the JT-NM Reference Architecture is the separation of the abstract identity
of elemental content (“sources”) from the specific encoding or representation of that
content (“flows”). Identity of media is also globally unique, which means that any
description or references can always be looked up and traced back to the same piece of
media, regardless of which system generated the reference. Any transformations to media
can be expressed in terms of these references, maintaining ancestry and other metadata
throughout the production chain.

It becomes clear when trying to apply microservice concepts to an IP production toolchain
that a separation is needed between the user interfaces that allow a user to manipulate
media and the actual services handling the media. Well-defined interfaces and protocols
built on top of the NMOS architecture can then expose this underlying functionality to the
tools which make use of them, meaning the tools need only have access to proxy assets
for preview and can use the NMOS identity model to hold references to the data across
multiple systems.

ARCHITECTURE

The proposed architecture uses the capabilities given by the NMOS specifications, with
the constraints mandated by a modern, secure, cloud-based deployment target. It consists
of a set of microservices that expose certain capabilities, a deployment pattern for them,
and a data model. The data model is the NMOS implementation of the JT-NM reference
architecture, but the system is most concerned with the concept of sources as a way of
addressing media assets and their metadata, as well as describing transformations which
are performed on media.

Figure 1 shows the major components of this software architecture. There are three key
areas of the system: the production core, gateway services, and client code. The
production core consists of a cluster around NMOS IS-04 Discovery & Registration
servers, but these core services are not directly exposed to end users. The gateway
services are services that are deployed to the production core, and register with the NMOS
registry, but also expose services to the outside world. The final classification of system is
that of client code, which runs on the end-user’s device, and uses the gateway services to

interact with the underlying media and make metadata manipulations. Other services may
also exist to support live production use cases that can be integrated into the same
production core.

The ultimate purpose of this architecture is to support production tools. These consist of
two closely coupled components, a tool server which runs as a gateway service in the
production core, and then a user interface which runs on the end user’s device (for
example, a web application in a browser). This is an application of architectural pattern
named by Newman (6) as “backends-for-frontends”. The tool server is then responsible for
proxying through actions and data between the production core and the user interface,
applying authentication/authorisation logic at that time. Any other intermediate business
logic for the use case of that particular tool is also the responsibility of the tool server, for
example storing tool specific session or configuration data.

Although the diagram only shows a single production tool, the architecture is flexible
enough to either be deployed as a “black box” within existing production infrastructure,
with each instance supporting a single tool, or as a single core supporting multiple tools.
The benefit of the latter approach is that narrowly-focussed tools for different craft roles
can be designed to work together in a co-operative way on the same underlying metadata
and media assets. However, it is rare to have the opportunity for a green-field deployment
of new production infrastructure, so the deployment of a “black box” approach for an initial
tool with bridges to existing infrastructure allows you to start the move to IP production,
whilst giving you the flexibility to grow the role of services in the production core over time
as an organisation adopts an NMOS-compliant IP core.

Figure 1 - System Diagram of Proposed Architecture

PRODUCTION CORE

Production Tool Server Media Gateway

Production Tool
User Interface

NMOS IS-04
Discovery &

Registration Cluster

Media Access API

Media Store

M
e
d

ia
 In

g
e
s
t

M
e
d

ia
 P

u
b

lis
h
e
r

IP Distribution
Infrastructure

Production

Metadata

Store
Media Authoring

Tools

Production Metadata
API

Media Analysis Tools

User Authentication /

Authorisation Boundary

Security

A core concern that led to this design is security. One of the benefits for end-users of
cloud-based working is the ability to work from anywhere, and on their own devices.
Exposing the NMOS services directly to the Internet may be an option, but a common
approach to IT security usually involves minimising the exposed surface of your APIs to
minimise any attack vectors. Additionally, the NMOS specifications do not currently specify
how the concepts of authorisation and authentication should be implemented, but these
are an important concern for any cloud-hosted system. In order to minimise the exposed
surface area, and to avoid pre-empting any specification work in NMOS, this architecture
uses the production core as an area where only trusted components can be deployed.
Gateways allow the core to interact with other parts of a larger system, as well as for end-
users who wish to access these tools from the cloud-hosted core. These gateways, and
the “backends-for-frontends” pattern are mostly responsible for dealing with these
concerns of authorisation, leaving the production core to focus on the production domain
and limiting the exposed area of the system.

One mechanism for securing the production core is by using network-level isolation, such
as physical separation of networks, the use of Virtual Local Area Networks (VLANs) and
physical protection of network infrastructure. This can be useful as part of a layered
approach to security, but cannot be the sole solution, as complete isolation is incompatible
with a cloud way of working. From NMOS IS-04 version 1.1 we can use secure HTTP
(HTTPS) with Transport Layer Security (TLS) client certificates (7), giving us an additional
layer of security. Certificates are granted to an individual or application, allowing us to
identify the caller of an endpoint and to encrypt communications in transit between
different nodes. This can be combined with a per-endpoint whitelist of authorised users.
Effective use of client certificates in HTTPS requires a public key infrastructure with vendor
support for these, but no vendors have yet made this a priority, due to a lack of demand
and the complexity involved with its management.

Although production end users do not have direct access to the production core,
operations engineers do. One advantage of the TLS certificate approach is that operations
engineers can access a cloud-hosted production core from any location provided they
have their credentials, as opposed to being required to be on a particular network.
Alternative approaches such as Virtual Private Networks could also be feasible.

However, the code running on an end-user’s device requires a mechanism to
communicate with the production core. This is the role of the tool server. The tool servers,
like other gateway services, face both the production core and the wider Internet, and so
become areas of security-critical code. To address the requirement of user-based access
to resources and tools, this architecture exploits the “tags” field of NMOS resources to tag
resources with a project ID, which can then be used to determine if a user has access to a
resource.

Each tool allows a user to pick a project to work on, and an authorisation service states
which projects a user has access to. When a resource is created, the project tag is added,
and when any resources are fetched, the tool server ensures that the tag on that resource
matches that of the project the user is working on. Whenever any further manipulations are
made to those resources, the resource’s metadata is requested to verify that the project

tags of that resource
match that which the
user has been
authorised to
manipulate. This
workflow is shown in
Figure 2.

This integrates with a
wider single sign-on
system which issues
session tokens to users
who authenticate using
that service. The tool
server redirects users
to the sign-on page if
the token is missing or
otherwise invalid.
Additional protections
can also be applied,
such as using network
isolation or firewall
rules to limit access to a corporate intranet, but this loses some popular efficiencies of
cloud workflows, such as “bring your own device” and flexible workflows.

Production Core

Inside the production core, we have identified several services which are needed to
support production tools: a media store, a media access API, a metadata store, a
metadata API, services to support media analysis, and services to support media
authoring, in addition to the NMOS IS-04 discovery & registration services.

The media store component abstracts the underlying storage to provide access to media
in terms of flows. Object stores as described by Mesnier et al (8) provide a suitable model
to follow here, where an individual object within an object store consists of a segment of
essence (video, audio or data). This introduces complexity for users who then need to
concatenate or trim segments to get the time range they are interested in. Additionally,
there could be many media stores within a system. To manage this complexity, a façade is
needed over the media stores to provide access to the media. This could also be extended
to support other types of store. This “Media Access API” exists to serve the needs of the
tools which access the media. The interface is simple, it accepts a source ID, a description
of client capabilities (for example, container and codec support in a HTTP Accept header)
and a requested time range. The role of the media access API is then to locate appropriate
stored flow segments from the underlying media stores and provide them to the end user
in an appropriate container (e.g., as an MPEG-DASH adaptation set, described in a
manifest, or as a single MP4).

In an NMOS-based system, raw data exists as an essence type alongside video and
audio. This could include timed data such as subtitles or metadata such as logging notes,

Figure 3 - Authentication/authorisation workflow

Production Tool

Server

Media Metadata

API

Production Tool UI

Authentication

Service

Authorisation

Service

1. Submits request with session token

2. Check token validity
and fetch user ID

3. Fetch resource metadata
(including “project” tag)

4. Check is user is
authorised to access
resources with this

“project” tag

or the output of automated analysis. This kind of metadata is treated like any other media
flow, but with a payload of structured data, rather than a video frame or audio sample.
Other types of metadata are needed too, to describe relationships about the structure of
media and to assist in indexing media within a content store. For example, a multi-cam
shoot may want to group which video sources and audio sources were used for a shoot,
as well as time ranges which indicate at which times takes were made and hence the
media is available for. Similarly, rendered output might want to be reflected as a group of
video and audio to give sufficient metadata for a multiplexer to use for delivery. Mirroring
the structure of media stores and media access APIs, this data is kept in a metadata store,
with an access API abstracting across them to allow the tools access to this data.

The final two components of the production core deal with new software-defined services
which become integral parts of the production chain. Content analysis is proving an
extremely effective tool to assist with workflow, with the metadata generated from these
tools assisting craft users in their day-to-day workflow. A simple use case might be to run
speech-to-text against ingested audio to speed up discovery of content in rushes and
archive material, or to perform automatic quality analysis on edited media. The output of
these content analysis tools is a new NMOS data that is related back to the analysed
media using the parent attribute in the NMOS source/flow resources.

Finally, as the tools themselves only need to describe transformations to media in terms of
actions on sources, a way is needed to record these transformations that, when applied,
author new sources from the raw ingested content. This is fulfilled by the media authoring
tools. By making this part of the production core, dynamic ancestry data for a derived
source can be retained as transformation and authoring data is recorded, giving users the
ability to see the history of content through the production process. For example, for edited
audio, speech-to-text only needs to be run on the original audio. Tools can then carry the
results of this analysis downstream by using this ancestry, rather than having to analyse
the newly authored content as if it were brand new.

Gateway Services

In addition to the services in the production core, there are three key services which bridge
the production core with external systems: the media ingest function, the media gateway,
and a media publisher. In a complete IP-based chain, the media ingest function would be
at the point of capture straight from the device, but for the foreseeable future, there are
likely to be many ways of media entering an IP production core, from SDI capture, to
ingest of archival material, or files transferred from a camera card. The media ingest
function primarily deals with converting material into the grain format and ensuring they
have an appropriate identity, but could also deal with matters such as transcoding flows
into low resolution proxies for use in browsers. The media gateway then deals with making
ingested material and proxies available to the client devices of users of the production
tools. It works by applying a layer of security across the media access API in the
production core. The media gateway provides content by proxying the media stores to
outside of the production core, but does so using URLs that have secure, time-limited
tokens in them. The tool server also uses the media gateway to generate these signed
URLs for media so they can be accessed by client devices, usually by requesting a low-res
proxy of the source.

Content must also leave the production core to be distributed to audience members. This
is achieved using bridging gateways like those used for ingesting media. The gateways will
typically produce files in standard interchange formats for delivery to distribution
infrastructure, typically by multiplexing together video, audio and subtitle flows into an
appropriate container format, or an appropriate streaming format.

EXTENDING THE REFERENCE ARCHITECTURE

The JT-NM Reference Architecture is designed in such a way to allow for organisation-
specific architectures to be built on top of it. BBC R&D is developing domain specific
architectures for data using this capability, with the intent to make these available as open
specifications for interoperability, in addition to organisation-specific extensions. RESTful
services exposing various APIs are also being developed, which advertise themselves as
services on an NMOS node.

One key data model and set of APIs being developed is one that describes the narrative
structure of a story, required to support tools for script writing. This interoperates with a
descriptive language of how different media elements are composed together dynamically
on an audience member’s device. This data model is further described by Cox et al (9),
supporting a range of media experiences, from traditional linear, to non-linear immersive
experiences.

Data models also exist to associate manually captured production information, such as
scripts or logging data with the media in the system. The results of content analysis, such
as speech-to-text, shot changes and face detection create relationships that are modelled
in a similar way. This rich mesh of data can then be exposed to assist tool users.

To separate the production tools which manipulate content from the actual act of rendering
the newly authored content, a protocol is needed to describe the transformations to media
and compositions of media to create completed output.

In this protocol, production decisions relating to media composition and processing are
captured and stored as events on a composition timeline, describing how to construct a
new NMOS source. This comprehensive description is similar to a recipe that describes
how to combine media ingredients through a defined set of processes to re-create the
composition precisely. Since the ingredients are referenced using their abstract source
IDs, the recipe can be created in real time by a web-based tool working with low resolution
compressed proxy flows and subsequently applied to full quality representations.

The published recipe and the rendered result share a source ID as they are logically
equivalent representations: the event-based format of the recipe can be directly streamed,
and is also splice-able. A query to the Media Access API for a given source can return
either format, based on which is requested and/or available, so a client can choose
whether to optimise for simplicity or flexibility.

INTEGRATION WITH IT ESTATE

As these tools are all software, they can be deployed and managed to an IT estate like any
other production-critical IT system. Each component of the system can expose status
pages and metrics for centralised monitoring by standard tooling, as well as providing log

files which can be aggregated for analysis by tools and to assist in debugging issues by an
operations team.

This architecture also allows for packaging of application components using standard
mechanisms for the deployment target and as such, management of the infrastructure and
configuration management can be achieved using industry standard orchestration tools.

SHORTCOMINGS & NEXT STEPS

There are issues with this architecture. One is that some layers of abstraction attempt to
hide underlying complexity that sometimes need to be exposed due to implementation
concerns. For example, utilisation of public cloud providers is attractive due to a low barrier
to entry, but often cannot provide the necessary performance guarantees or be restricted
by networking bottlenecks. A future extension to the architecture to support multiple
production cores with gateways between them may allow deployments to take advantage
of different environments but still behave as joined up IP production infrastructure. Similar
issues due to this abstraction come when you try to scale media storage: the media store
assumes that content is always online and available, which may not always be true or the
most cost-effective way of managing media.

Another issue is that the security model based around project access is not fine-grained. A
user either has complete access to all resources tagged with a project ID, or no access at
all. More flexible protection will be needed to satisfy more complex production workflows.

The next steps for this architecture should focus on addressing these shortcomings,
especially around the security model. Trials of the concept of multiple production cores
with gateways between them will validate the wider applicability of this approach. This
work could feed into open specifications addressing security, allowing multi-vendor
interoperability for tools at the edge of the production core.

Other follow-on work could look at developing further organisational and domain specific
data models, APIs and protocols that may evolve into open standards. One such model
may be one for media rights, with the aim of simplifying reporting and compliance
requirements.

CONCLUSIONS

The architecture shown above has been implemented for a small number of trial systems
inside BBC R&D using the BBC’s standard IT deployment infrastructure and tooling, and
satisfying the BBC’s information security requirements. This shows promise as the
foundation for future iterations of IP production infrastructure in the cloud as well as
simplifying engineering effort by bringing best practices from IT architecture and
operations management into broadcast infrastructure.

REFERENCES

1. Advanced Media Workflow Association, 2016. Networked Media Open
Specifications. https://github.com/AMWA-TV/nmos.

2. Joint Task Force on Networked Media, 2015. Networked Media Reference
Architecture V1.0. http://jt-nm.org/RA-1.0/.

3. The Open Group, 2009. SOA Source Book. Van Haren Publishing.

4. Fielding, R. T., 2000. Architectural styles and the design of network-based software
architectures. Doctoral dissertation, University of California, Irvine.

5. Martin, R. C., 2003. Agile software development: principles, patterns, and practices.
Prentice Hall PTR.

6. Newman, S, 2015. Pattern: Backends For Frontends. http://samnewman.io/writing/.
7. Dierks, T., Rescorla, E., 2008. RFC 5246: The Transport Layer Security (TLS)

Protocol Version 1.2. The Internet Engineering Task Force.
8. Mesnier, M., Ganger, G. R. and Riedel, E., 2003. Object-based storage. IEEE

Communications Magazine. August, 2003, pp 84 to 90.
9. Cox, J., Brooks, M., Forrester, I., Armstrong, M., Stenton, P., 2017. Moving object-

based media production from one-off examples to scalable workflows. Submitted to
the 2017 International Broadcasting Convention.

