

TECHNICAL PRACTICES FOR A MULTI-CDN DISTRIBUTION
STRATEGY

Bram Tullemans

EBU, Switzerland

ABSTRACT

Ideally data in a Multi-CDN (Content Delivery Network) setup is load balanced
dynamically using real-time traffic information gathered throughout the delivery
chain. This paper provides the rationale and architectural guidelines for an online
Multi-CDN distribution backend, abstracting the content publication and playout
logic from the actual delivery networks used. It describes the essential technical
practices for a Multi-CDN setup covering the role of the Origin servers and
essential broadcast features like geo-fencing, HTTPs secured traffic, cache
purging, etc. Essential metrics like video player feedback are detailed and fall back
scenarios are explained. All the elements above are deployed and tested during a
pilot involving 5 European broadcasters sharing a Multi-CDN overlay to load
balance their traffic over 3 different CDNs using dynamic switching algorithms. The
findings presented in this paper will be updated during the IBC 2017 presentation.

INTRODUCTION

Broadcasters are increasingly relying upon online delivery. Unfortunately, using the best
effort network offered by the open internet is more expensive (4), operationally less
reliable and offers insufficient traffic capacity compared to traditional broadcast distribution
methods. By switching HTTP traffic between different CDNs, based on real-time
performance data and business parameters, these limitations can be overcome. Stacking
of CDNs improves redundancy, increases availability and capacity which should improve
the audience’s quality of experience while driving costs down.

From a cost perspective, it makes sense to allocate as much traffic as possible to a single
supplier, but this creates an operational risk as all traffic is run through a single
arrangement. With a Multi-CDN setup, the content provider can switch to a lower cost
CDN if the quality is good enough. Automatically applying real-time traffic data in
combination with business rules enables a dynamic optimal choice of the data flow. It
leverages fluctuating live capabilities of different networks and increases operational
control.

As well as optimizing for quality, the Multi-CDN load balancing solution can be used to
maximize different bandwidth arrangements, i.e. CDN operators or peering relations. It will
be able to fill the ‘pipes’ efficiently, to comply with different contractual commitments and
switch networks dynamically when performance is not meeting the required standards.
One does not have to bet on the service of a single provider; on the contrary, it will be
possible to add promising new providers or remove low performers.

However, it is not all good news with this model, as the switching layer introduces new
costs that can be substantial if it has to be operated by a single content provider. Also the
upscaling from a single to Multi-CDN introduces extra complexities as roles and
responsibilities get distributed over different organisational entities. The technical load
balancing solution should provide the tools to manage this situation effectively. But it will
also impact the choice of partners as potential competitors need to complement each other
and cooperate in a single service to work on common solutions.

Recognizing these requirements for its Members, the EBU initiated a new Multi-CDN
service, known as EBU Flow. It started in May 2017 as a pilot. It has two main objectives:
to improve the quality of online delivery and to reduce the cost to the content providers (3).
At the time of writing, the participating EBU Members are: RTÉ, VRT, RTBF, NPO and
ERT.

Figure 1: EBU Flow Multi-CDN pilot setup.

The service is based on a strategy of using multiple CDNs in a single service to optimize
data flows from the content provider to the audience. Interviews with EBU Members and
engagement with the industry have shown a clear consensus that a Multi-CDN is
necessary to meet the growing demand for video delivery regionally and in terms of
throughputs.

ESSENTIALS OF A MULTI-CDN STRATEGY

Using multiple CDNs in a single delivery environment is possible due to the fact
broadcasters use HTTP streaming nowadays. This commoditization allows media content
to be cached, played out and monitored in a similar fashion. Content providers can
combine open CDNs with other arrangements, for example, their house CDN or peering
relations. All available capacities and connection speeds in the delivery chain can be
measured in near real time and this information can be taken into the load balancing

equation on their own terms. For example, it should only switch traffic to an open CDN
when peering capacity is fully utilized.

In the most basic scenario, CDNs provide pure HTTP or HTTPs transport service for
delivering GBs of video they collect from the Origin server to end users of the content
provider. An API wrapper unifies the specific calls providing a single point of integration to
engage with different CDNs. This allows for example to purge all caches in the different
CDNs with a single call.

The CDN overlay technology itself is a switching layer to load balance traffic between
different CDNs based on dynamic switching rules. A play request from an end user
generates a call in the broadcasters’ backend to this switching API server for a
recommendation for the optimal CDN to use for the IP-address involved. The resolved
redirect URL or URI path allows the media player to start buffering the content from the
intended cache inside the CDN network.

Load Balancing rules
Before real time performance metrics can be applied efficiently one could only use static
load balancing with fixed business rules to direct traffic based on volume, access ISP or
specific capabilities of a network. Dynamic switching changes the game and allows
performance metrics like Quality of Service (QoS) as measured by a network probe or by
the media player itself to be used in a real time automated CDN recommendation.
Combine this quality metric with the cost price for a network and the optimal choice of a
CDN can also be the cheapest available choice (Figure 1).

Figure 2: Business rules for load balancing traffic over different CDNs use both static and
dynamic data to optimise operational efficiency

Redundancy
The switching platform provides a redundant setup without a single point of failure. If one
of the connected CDNs is not available the traffic will be automatically switched to the
other. Pilot results of from May and June 2017 prove 100% availability as at all times there
was at least one CDN available.
The risk the switching platform itself fails can be mitigated by creating back-up strategies
either server- or player-side to fall back to one of the CDNs. To avoid overflowing in that
mitigation scenario, the provided backup CDN list should be configurable to allow the
resolve to be another CDN every time. The following logic can be applied in pseudo code:
1. New asset request by client X
2. Initiate timer
3. Request API for ordered list for client X
 a. If timer exceeds 250ms
 i. Issue default API object
 b. Else
 i. Issue retrieved API object
4. Media selection process takes API and builds URI paths for player
5. Manifest issued to player with chosen URI paths

Figure 2 is an illustration of the real time monitored throughput performance of different
CDNs on basis of kbps throughput on 95th Percentile over time. The red dotted line
represents a minimal required performance for a specific video to play without interruption.
At peak time (red arrow) the load balancer would switch traffic to the brown CDN to avoid
service interruption. But at most times, and this is confirmed by the pilot, more than one
CDN can deliver better than minimally required allowing to switch traffic for commercial
reasons to a specific CDN.

Figure 3: Switching platform selects automatically the best performing CDN of that
moment for the targeted location. Illustration based on (1).

REAL TIME METRICS
Google Maps provides a useful analogy to explain how real time metrics are applied in
recommending the optimal route for the traffic. If one has to get somewhere, Google Maps
will provide potential routes and calculate the time it would take to reach the destination

based on the anonymized travel times of other users. Google collects location data from
the device, using it to calculate how much traffic congestion there is on a given route. If an
alternative route becomes quicker this will change the recommendation to the end user.

Ideally in a Multi-CDN service the content provider collects connectivity performance data
with respect to different content sources, such as different caches in CDNs, peering
relations or from the origin server. Availability (response percentage on heartbeat request)
and Throughput (actual speed of the network measured by pulling through a data object)
are mostly used by the backend of the connected content provider and then be informed
about the best performing location. The player will use this as a preference and the other
CDNs as fall-back.

Quality of Experience
The most promising approach is the measurement of the Quality of Experience (QoE) from
the end user at a certain moment in time in a specific location. In this paper we use QoE
metric proposals from Streaming Video Alliance (5) and the DASH Industry Forum ‘DASH-
IF (2)’. Basic data in this respect includes:

• Total Playing Time

• Video Start Failure

• Video Start Time

• Re-Buffering Ratio

• Bitrate

These basic QoE metrics can be deduced from captured data inside the media player.
When events are trigged an analytics client data collector pushes reports to pre-
processing servers to create data points which can be transformed into CDN
recommendations. Media controller event handlers are not sufficient to use as a trigger to
collect player properties but need to be complimented by a heartbeat measurement. In
case the end user closes the browser the last available heartbeat registration can be used
as an end situation by using the HTML5 ‘timeupdate’ event to collect, for example every 10
seconds values representing the current user experience (6).

loadstart

playing

play

waiting

seekingseeked

pause

Player event

User Opens
Webpage with

Video

Loadeddata

JavaScript Collector is Loaded

Callbacks are registered on
Playback events

JavaScript

User action
Heartbeat
activated

Timeupdate

User clicks on
Play button

User moves
Slider

User clicks
Pause

ended

video_bitrate_changed

stalled

Audio_bitrate_changed

Mapping of HTML5 events on in media player activities

Buffer not
sufficient

Events to indicate change of bitrate for
playing media are non standard HTML5
events for adaptive streaming player
implementations based on HTML5 MSE

Interruption of
content retrieval

Event triggered
every X seconds

after first
inititiation of

‘playing’

End of file
reached

Media can be
played

Media is
rendered

Play button
activated

Page object start
loading

Media play stop

New Playhead
start position

Seeked position
reached

Figure 4: Example of mapping of basic HTML5 events to a playout sequence in a media.
The trigger of different events during the playout session can be used to request player
states or properties (6).

Event to QoE
With an event from a media player a process is triggered to collect properties in the client
at that moment of time. In Figure 3 the relevant events are mapped to the playout
sequence. Collected information is stored server side and processed into data points that
can be used in the Multi-CDN setup as QoE input (Figure 4). The discussed data points
can be derived from player properties in the following matter:
1) Total Playing Time is the SUM of

a) Deltas of playhead wallclock timings between triggered ‘playing’ and ‘waiting’
events.

b) Deltas of playhead wallclock timings between triggered ‘playing’ and one of the
intended interruption events ‘pause’, ‘seeking’ or ‘stop’ or the last available
heartbeat ‘playing’ event registration.

2) Video Start Up Time is SUM of playhead wallclock timing deltas between ‘play’ and
‘playing’ events.

3) Re-buffering Ratio: SUM of
a) Video Start Up Time.
b) Deltas of playhead wallclock timings between trigged ‘waiting’ and ‘playing’ events
TOTAL DIVIDED by Total Playing Time.

4) Video Start Failure can be deduced from triggered Error events between ‘loadstart’ and
‘playing’.

5) Bitrate: This metadata is fixed for single file content but is a variable depending on the
connection speed to the available caches when adaptive streaming formats like MPEG
DASH or HLS are used. Adaptive streaming can be implemented in HTML5
environments with Media Source Extensions (7).
a) The original bitrate and encoded resolution need to be captured the first time

‘playing’ event is triggered for example by reading this technical metadata from the
MPD when MPEG DASH.

b) Idem for all subsequent changes of playout media representations during the
session including the relative positions of the playhead and corresponding wallclock
timings.

Client side Server side

Player
Events

Collector API

Player Events

Storage API

Player Events

Pre-Processing

Data Points
Analytic Server

Load Balancer

1
PLAYER

2
EVENT COLLECTOR

3
EVENT STORAGE

4
PRE-PROCESSING

5 Processing
CDN selection

API JavaScript HDFS InfluxDB InfluxDB

Figure 5: Example of a data flow processing architectural overview to capture reports
generated in the media player via HTML5 video object to the pre-processing of this
information servers side into QoE data points. In near real-time these need to be
processed into decisions of the Load Balancer in the Multi CDN setup.

Data Processing
Combining the metrics provided per IP-address a description of the achieved quality is
collated. As per content provider the webpage/application is the same any differences in
quality can be attributed to the delivery chain or playout devices used. Combining more
sources allows filtering out noise of home networks and playout devices statistically. With
enough data at hand a prediction model of which CDN delivers the best speed to a specific
location at a specific time can be made.

When not enough player requests are available, additional information can be acquired
from third parties reselling real-time performance metrics acquired by pulling objects
through the network or implementing functionalities in the player to test the speed towards
the different available CDNs.

From a privacy perspective, the data collection and processing can be compared with the
approach of website analytics tools. A QoE evaluation is accompanied with a timestamp,
IP-address, content-ID and identification of the playout CDN. The content ID and CDN
identification is a combination of the URL applied after retrieval algorithm that can be
requested through ‘currentscrc’ attribute of the media element as described in HTML5
MSE (7).

MULTI-CDN LOAD BALANCE ARCHITECTURE
As described above there is a central role dedicated to the switching entity or Load
Balancer. It aggregates from different sources as described above performance metrics
from the end user media players and other probes in the network. This data is processed
into performance recommendations of the different CDNs in different regions at this
specific time. From the CDN the Load Balancer receives updates on how much data is
used which can fuel in combination with the performance information a business rule that
for example optimises the utilisation of the bandwidth capacity procured from the CDNs.

Figure 6: Example Multi-CDN architecture recognising the different essential components
and the direction of the data flows.

CDN API Wrapper
The Load Balancer should ideally perform the task of the API wrapper to centralise the
communication with the CDNs. This allows not only to aggregate user reports and billing
data but can also perform geo fencing and token authentication (if required). These
functions are deployed differently and normally enforce the CDN specific implementations.

CDNs use different (versions) databases to check if player requests are from an area
content may be played out and specific tokens exchange implementations to check if the
media player is authentic. Both can be integrated in a single call from the player to the
Load Balancer to check if the content can be played out or not by verifying the key and the
IP-lookup. The Load Balancer is aware which CDN should be used and requests from the
CDN API Wrapper to retrieve the playout URL from the CDN with the resolved token. This
information is passed through to the media player. The CDN API Wrapper functionality is
being monitored throughout the pilot to conclude if it is required.

Last but not least the CDN API Wrapper function should allow broadcasters to purge all
caches in a single call. Whenever the rights management backend or Content
Management System triggers an event that content cannot be published anymore, this
should be carried out swiftly and thoroughly. Operationally it would be sub-optimal to have
to delete publications from different CDN interfaces manually.

Request Router and HTTPs
As the final act, the Load Balancer decides which is the preferred CDN for a specific end
user call. The Request router performs the handshake with the video player object to
communicate what the definite URL of the media file is directing it to one of the CDNs or
private edges/caches in a hybrid CDN setup.

To enable HTTPs a single wildcard can be applied over different CDNs by creating a
separate private key for every CDN and registering all relevant domains using the same
naming convention, for example: <sub-brand>.<brand>.<domain name>. Performance
wise it is recommended to use COM or ORG domains and not to host any other activities
under the same domain name.

Role of the Origin
In a Multi-CDN setup the Origin needs to be abstracted from the CDNs. The CDNs are
white listed in the firewall protecting the Origin and can pick up data when it is not cached
yet. Normally CDNs only cache content after a second end user request. Using more
CDNs introduces extra traffic to the Edge servers of the live and on demand Origin setup.
During the pilot 3 different mitigations of this traffic increase are tested. The first consists of
simply upscaling the Edge capacity of the Origins to meet the additional traffic. The second
involves changing the cache headers to enable the content to be available longer inside
the CDN. Longer availability should reduce the amount of times semi-popular content
needs to be picked up reducing the overall traffic to the Origin. The third option to tackle
increased Origin traffic consists of creating an extra Origin inside the CDN for pre-caching
the content. In any case it is recommended to have a double location redundant live and
on-demand Origin setup.

CONCLUSION
A Multi-CDN setup abstracts the publication plane from the delivery networks. The
decision logic, if content can be played and which route the media should travel over the
internet to reach its audiences is a decision taken by the Load Balancer. This allows the
content provider to use business rules and automatically deduce on basis of network
performance, end user experience, publication rights and contractual arrangements with
distribution partners what the optimal response is to a player request from a specific
location at a specific time. With these proven technical practices for a Multi-CDN
deployment broadcasters can gain more operational control over their online distribution
strategy.

REFERENCES

1. Cedexis, 2017. How to Evaluate and Implement a Multi-CDN Strategy. Available
from: http://go.cedexis.com/Implementing-Multi-CDN.html. (Accessed on 01-05-
2017).

2. DASH-IF, 7-10-2016. DASH-IF position Paper: Proposed QoE Media Metrics
standardization for segmented media playback. Available from: http://dashif.org/wp-
content/uploads/2016/10/ProposedMediaMetricsforSegmentedMediaDelivery-
r12.pdf (Accessed on 01-05-2017).

http://go.cedexis.com/Implementing-Multi-CDN.html
http://dashif.org/wp-content/uploads/2016/10/ProposedMediaMetricsforSegmentedMediaDelivery-r12.pdf
http://dashif.org/wp-content/uploads/2016/10/ProposedMediaMetricsforSegmentedMediaDelivery-r12.pdf
http://dashif.org/wp-content/uploads/2016/10/ProposedMediaMetricsforSegmentedMediaDelivery-r12.pdf

3. EBU, 2017. EBU Flow. Available from: https://tech.ebu.ch/cms/flow (Accessed on
01-05-2017).

4. OFFCOM, Redshift Strategy, 2015. PSB distribution costs. Available from:
https://www.ofcom.org.uk/__data/assets/pdf_file/0021/62643/psb_distribution_costs
.pdf (Accessed on 01-05-2017)

5. Streaming Video Alliance, 2016. Working Group Quality of Experience, 05-2016.
Key Network Delivery Metrics. Available from:
https://www.streamingvideoalliance.org/download/4482 (Accessed on 01-05-2017).

6. W3C Recommendation, 28-10-2014. HTML5 A vocabulary and associated APIs for
HTML and XHTML. Available from: https://www.w3.org/TR/2014/REC-html5-
20141028/embedded-content-0.html (Accessed on 01-05-2017)

7. W3C Recommendation 17-11-2016. Media Source Extensions. Available from:
https://www.w3.org/TR/media-source/Streaming (Accessed on 01-05-2017).

https://www.ofcom.org.uk/__data/assets/pdf_file/0021/62643/psb_distribution_costs.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0021/62643/psb_distribution_costs.pdf
https://www.streamingvideoalliance.org/download/4482
https://www.w3.org/TR/2014/REC-html5-20141028/embedded-content-0.html
https://www.w3.org/TR/2014/REC-html5-20141028/embedded-content-0.html
https://www.w3.org/TR/media-source/Streaming

