MOVING OBJECT-BASED MEDIA PRODUCTION FROM ONE-OFF EXAMPLES TO SCALABLE WORKFLOWS

Jasmine Cox, Matthew Brooks, Ian Forrester and Mike Armstrong

BBC R&D, UK

ABSTRACT
In this paper, we outline our progress towards creating tools and workflows for object-based media production, taking us from one-off demonstrators to scalable production, through the creation of production tools based on shared data models. We feature a recent example of object-based media (OBM) created from the ground up, and discuss the lessons learnt from this production. We then discuss the progress we are making towards creating a kit of OBM software tools and workflows. Finally, we look at our progress towards building a community of practice for object-based media.

INTRODUCTION
BBC R&D has been developing the concept of object-based media, exploring the role this approach can play in enhancing the experience for our audiences and its impact on storytelling. In each case the creation of these object-based experiences has been a manual process of analysis, tagging, assembly, and software development. Most of these experiences involved re-versioning existing linear media. This paper follows the creation of our most recent example of object-based media, the Cook-Along Kitchen Experience (CAKE) which was conceived and produced as an object-based experience from the outset. This paper looks at how we are applying the lessons learned from our previous work to the development of OBM data models and software tools. The paper also discusses how we intend to involve content creators from both inside and outside the BBC and build a community of practice around the development of new forms of media.

BACKGROUND
It is now 20 years since Janet Murray’s Hamlet on the Holodeck explored the possibilities for personalised narrative (1) and whilst computer games have developed greatly over this time there has been a slower development of more conventional media. The BBC first explored the possibilities of interactive radio drama in 2001 with The Wheel of Fortune and The Dark House in 2003, both authored as 3 parallel conventional radio plays each following one of the 3 characters. The interaction enabled the listener to switch between the different character perspectives (2), but the production of the 3 synchronised versions proved highly challenging and very time consuming (3). Since then other projects outside of the BBC have explored similar media challenges and developed tools. The NM2: New Millennium, New Media project created several interactive TV experiences, most with unusual narrative forms. Accidental Lovers applied a circular structure to a drama, whilst Gormenghast Explore added spatial navigation to a TV fantasy series and A Golden Age
provided a sequence of video clips prioritised by topic (4). The NM2 project also developed a player and production tools for describing the interaction and the video editing process. These ran with an underlying logic engine and were described using their own Narrative Structure Language (5).

Commercial companies have also explored the potential of these kinds of experience. TouchCast have created tools to produce what they call Smart Video, where a TV programme can be enhanced with links to documents or additional media content. Eko (formerly Interlude) have explored various forms of interactive and branching media, producing narrative examples like Possibilia as well as quiz formats, and music videos allowing you to switch between different video tracks (6). These interactive music videos have a structural resemblance to early interactive BBC radio dramas.

The first example of object-based media from BBC R&D was a short audio drama, Breaking Out, where the dialogue varied according to the location of the listener (7). We then created a variable length radio documentary re-using the material from a pre-existing programme. The narrative themes and structure of the programme were broken down into separate objects which could be assembled on the fly to create complete narratives of differing durations (8). More recent work has explored the use of object-based ideas for production tools: Discourse was developed to enable audio editing of speech via a text-based interface, whilst Squeezebox provided automated video re-editing via semantic mark-up. Storyarc provided a new structured continuity database for the long-running Archers radio programme, and Visual Perceptive Media was the first experiment conceived and built as an object based experience from the start (9).

COOK-ALONG KITCHEN EXPERIENCE

The Cook Along Kitchen Experience (CAKE) was built as a showcase for the object-based concepts developed in previous demonstrators. The aim was to create a compelling audience-facing proposition which demonstrated the value of the responsive capabilities enabled by OBM in teaching skills, and further our understanding of appropriate object models. Through this project, we set out to understand the workflow for building a visual object-based production: from conception and planning, through shooting and recording, to post-production and playback.

CAKE is a responsive learning experience implemented in the web browser. It enables someone cooking at home to follow recipes at their own pace. It is a tailored cookery show that can tailor its ingredients according to the number of people being catered for and the availability of appliances in the home. The viewer selects one or more recipes, then adds the number of people they are cooking for, and the number of hob rings available. The cooking steps are dynamically scheduled by the application, which resolves a number of constraints to ensure that the elements of the meal are ready in time for dinner. CAKE offers the audience video clips describing each step, alongside an alternative of recipe cards and waits for the viewer to complete each step, see Figure 1. The viewer then triggers the start of the following step.

We ran a prototype object-based shoot to try out various methods of tracking the production, and create test material. From this we learned how to organise the data into a structured form that minimised duplication of video sequences. Care was required to plan
the structure of the cooking steps to enable them to support multiple recipe combinations. Sequences that required all steps to be completed in a series were distinct from those not tied to any stage in the process. We also ensured that the language used by the presenter contained no mention of quantities or references between different recipes, so that they could be used in any combination. This was achieved by manually mapping recipe “stories” with cards on a board which was used to create a data structure in a spreadsheet. We employed a domain expert, Bella Wright, to create the recipes. We asked her to give us five recipes that both worked well on their own, and in combination with each other. These recipes were then broken down into individual steps which defined the individual objects to be created.

The shoot was a conventional multicamera production with two television cameras and operators and four fixed, wide-angle, 4k cameras. Shooting time was minimised by avoiding the duplication of steps in the captured video, and placing the variations into the final application. The shooting script was derived from the pre-production spreadsheet, and items were enumerated by objects and shots, whilst logging was entirely manual. Post-production involved developing a custom software application, the careful mapping of shots to objects, and conventional video editing. We created a linear video for each dish and associated it with metadata representing the objects within it. The application then plays out objects as defined by the in and out points in the metadata.

A scheduling algorithm is used to organise and playout media objects and recipe instructions in an optimal order. It takes into account the recipe data, recipe choices, and current progress through the tasks. It uses critical-path methods to identify the shortest possible completion time through a set of related activities and resource-levelling to distribute the cooking steps around the fridge, hob and oven. This orders steps logically for a particular kitchen and set of recipes. It also allows tasks to be carried out simultaneously where possible.

We ran a proto-pilot with 14 people using a low-fidelity version of the final experience. We found that simple features, such as stopping after each step were seen as extremely valuable, and this informed our layout design for the controls. We also refined the data model to better fit the requirements of the experience, acknowledging that this data model was tied directly to the domain of cooking, rather than being an extensible or generalizable model for other object-based experiences.
The final design was built using the BBC’s GEL frameworks (10) along with some custom elements to provide a familiar web video experience with built in natural interaction. A locally hosted version with a dynamic back-end visualisation of the schedule was created as a demonstrator for IBC2016 as shown in Figure 1. This succeeded in conveying the concepts behind object-based media and prompted a lot of interest. The discussions highlighted how widely applicable object-based media is to teaching skills - for example, people could easily conceive interleaved learning experiences beyond public service broadcasting. An optimised version was launched on BBC Taster in January 2017 allowing anyone with a tablet or laptop to try it out for themselves1. A controlled home trial will give us more in-depth understanding of the interaction data, and where CAKE may be able to add value in terms of support for learning experiences. The key aspect of CAKE is that it places audience members at the heart of an IP delivered media experience in an entirely new way. In creating it we have highlighted the need for new tools and workflows to make the process sustainable. Our work has moved on to deliver on 4 areas we see as essential to the sustainability of OBM, namely new exemplars, data models, tools, and a community of practice.

DATA MODELS FOR OBM

Looking back over our audience-facing OBM projects we can identify clear problems with our tooling. The majority of projects were authored using short term, unsustainable approaches such as spreadsheets and python scripts (with the exception of projects like Squeezebox which were themselves prototype tools). This lead to a situation where the construction of the media was reliant on the ‘engineer in the middle’ who was often required in order to make changes to experiences. We also identified the problems caused by having individual (sometimes unexpressed) data models for each experience.

Crucially, we saw our lack of sustainable tooling as a barrier to the adoption of OBM by any potential community of practice. We want to transfer the creation of OBM experiences out of the realm of R&D engineers and into the world of craftspeople – it’s the community of practice that will explore the potential of OBM, provide us with real world use cases, and give us feedback to help develop our tools and workflows.

A Generalised Data Model for OBM Storytelling

We wanted to create a core generalised data model to describe all the object-based experiences we can imagine in the future, informed by our earlier work. The data model expresses OBM narrative structure, presentation structure, and production workflows. It allows us to have tangible conversations about OBM, enables interoperability, and allows the wider community to create their own tools.

We have chosen to model OBM narratives as hierarchical finite state machines – a simple method for expressing interactivity more familiar to the world of gaming than broadcasting. At the top level, we have a Story, which holds a collection of Narrative Objects. Narrative flow possibilities are expressed using one or more Links to other Narrative Objects. The narrative concerns are held entirely within these two levels of the data model - Figure 2.

1 http://www.bbc.co.uk/taster/projects/cook-along-kitchen-experience
Each Link has an associated Condition – a Boolean expression composed of any state available to the OBM experience - for example, variables holding information such as time of day, locale, and the viewer’s choices, preferences or profile. These links are evaluated in sequence until a Condition returns true – establishing which Narrative Object will be visited next. Additional Link types handle Story beginnings and endings.

A Narrative Object needs a media representation to convey meaning to the viewer. For this, Narrative Objects reference a Presentation Object (or, to handle grouping and hierarchy, another Story). The Presentation Object deals with how an individual part of the story is presented to the viewer. It consists of one or more Representations which enable identical narrative content to be conveyed by different media. For example, in CAKE, each recipe step could be viewed as a video, or as a recipe card. In the Presentation Object, each Representation has an associated Condition of a similar format to those in Narrative Objects – in this way, presentation can be editorially controlled by using experience state.

Each Representation points to an Asset Collection, which references an IP Studio (11) package holding the media necessary to present the Narrative Object. Representations themselves are not concerned with bitrates or codecs - these concerns will ultimately be handled by an OBM player that consumes the Story data model, evaluating network conditions and device capability to request media at an appropriate fidelity.

A Generalised Data Model for OBM Production

We also model associated production workflows. Each Story references a single Production Object – a container referencing all media and metadata pertaining to the production of a Story. Scene Objects are associated with Story Representations, acting as a container for all production content relating to the representation. The Scene Object holds links to captured media under a rushes list – each rush holding production metadata such as Take number and Shot number. The Scene Object also holds links to edited content created from the rushes, in the form of a Production Package - a wrapper around
an IP Studio package associated with production metadata. During playback, the viewer will experience the most recent version of a Production Package referenced by a Representation. Additionally, we can use the Scenes within a production to create a digital Shooting Schedule for the production.

TOOLING AND WORKFLOW FOR OBM

We are creating a number of tools as part of an OBM toolkit, which will describe flexible OBM workflows, see Figure 3. The tools are built around our data model, and on top of our OPTiC (Object Based Production Tools in the Cloud) platform (12).

The StoryFormer tool allows rapid wireframing of OBM experiences, authoring the Story data model. The tool enables Narrative Elements to be created and linked, with Conditions on Links used to express narrative flow. Before any assets have been filmed or recorded, proxy assets can be assigned to Representations – for example, a representative image or text snippet. In this way, an interactive experience can be pre-visualised, iterated, refined and tested before any media is recorded.

The StoryShooter tool is designed to help manage the flow of media into a Story’s Production Object, and is designed for use during a shoot or recording session. As every Representation is associated with a Scene in the production domain, we can construct and monitor the progress of a Shooting Schedule, which ultimately populates Production Packages used by Representations in a Story. The linkage between Scenes and Representations allows us to describe, digitally, the media assets that require creation, eliminating manual, error-prone artefacts such as the pre-production spreadsheets used by CAKE. This linkage also eliminates manual logging, and any post-shoot manual ingest process – media created to represent a Narrative Element, and any logging information, are associated automatically with the Narrative Element’s Representation. Relevant
footage for each Narrative Element can then be surfaced in **StoryFormer**. As each Scene may contain multiple takes and logging information, a craft edit will be required to produce the final asset for **Representations**. This will be achieved with a bridge to existing non-linear editing tools, or a simpler web-based editing interface. We envisage that a Story will complete multiple iterations through **StoryFormer** and **StoryShooter** before it’s completed. The final tool of the initial suite is the OBM player, which consumes the Story data model, handles viewer interaction and produces final output for the viewer.

It could be considered that traditional workflows start with the first ingest – other digital artefacts such as scripts and pre-production data exist, but are not tied to the production as a whole. The OBM Toolkit sees value in connecting up all production artefacts with a **Story** and associated **Narrative Elements**, as these production artefacts contain rich sources for metadata that can be used to describe an experience at a highly granular level. If content is described at a highly granular level as part of a regular production process, numerous higher order applications become possible by default. For example, semantic navigation and search is possible, and meta-OBM experiences (like trailers, series summaries, and catch-up services) can be automated. Previously this has been achieved in post-production, either manually or through automated metadata recovery.

Next Steps

There are still many specific details to resolve, both with our data model and our tooling. Key opportunities include: The methods that enable authors to express Link conditions in editorial terms, without the necessity to write Boolean logic. Specifying user interfaces that populate experience state (for example, explicitly choosing a recipe). Handling the composition of additional media into the narrative (for example, background music or graphical overlays). Enabling simultaneous editing of a Story by multiple users

BUILDING A COMMUNITY OF PRACTICE

We need to support a culture of experimentation around the craft and quality of OBM in order to expand our perspective on what this technology can provide and how it could be developed. We are in the process of encouraging the growth of a community of practice in this area. This has 3 key aims: **Awareness**: seeking out people and organisations already interested in or working on adaptive narratives through talks, workshops and conferences. **Advocacy**: presenting our work and demonstrating best practice in our work and methods as we explore object-based media and connecting people through networks like the Storytellers United slack channel and helping share perspectives and knowledge. **Access**: providing early access to our emerging software tools to a wide community for trial use and to generate feedback on their development. We are also partnering with the Department of Theatre, Film and Television at the University of York, including part of the original MN2 project so bringing invaluable experience and knowledge from the NM2 work. We have been talking to other sectors including museums, healthcare, transport and smart cities and this has generated example scenarios where OBM could be applicable. For example, in film distribution where a single release could be responsive to the need for either matinée, primetime, or late-night showings, dependent upon the audience. Finally, we are looking to work with content creators and interactive developers to inform how we take this work towards maturity, developing interoperability between
software tools and data models to mature OBM towards business as usual, with sustainable toolsets and workflows.

CONCLUSIONS

The creation of one-off object-based media has demonstrated the potential of this approach to personalised content. The most recent experience, CAKE, was created entirely from scratch and aimed at interactive skills teaching. CAKE has enabled us to develop a deeper understanding of the challenges of producing flexible and responsive media. We are now using this insight to drive our ongoing work on the development of data models and production tools for the creation of powerful new experiences with object-based media. The effectiveness and sustainability of the models and tools will emerge over time as we develop our understanding of the needs with developers and content creators and engage with a wider range of audiences and use cases.

ACKNOWLEDGEMENTS

We would like to thank Newcastle University Open Lab for their collaboration during the production of CAKE. Thanks also to BBC R&D team members Ben Robinson, Chris Northwood, Jon Tutcher, Thomas Preece, Max Leonard & Rhianne Jones.

REFERENCES