

TALKING WITH MACHINES: PROTOTYPING VOICE
INTERFACES FOR MEDIA

Henry Cooke, Thomas Howe, Joanne Moore,
Anthony Onumonu and Andrew Wood

BBC R&D, London, United Kingdom

ABSTRACT

Voice User Interfaces (VUI) and consumer products such as Amazon
Echo and Google Home are rapidly gaining popularity and are already
being used as media devices in the home; by some estimates, 6.5 million
voice-first devices shipped in 20161 and we've seen significant growth in
their use as a player of BBC content.

As broadcasters and creators of media software, we are interested in the
potential of these devices for both the delivery of our existing content and
the creation of new media experiences native to these devices. However,
the user interface shift they represent – from screen to voice - means that
many existing processes and patterns for user experience (UX) are no
longer relevant or need significant rethinking to be useful in this domain of
interface design. The relative novelty of this class of interface means that
there is little existing literature describing UX for VUI.

This paper describes a methodology we are developing to address this
lack of literature, followed by some design principles we have discovered
during our work on prototype VUIs.

INTRODUCTION

In BBC R&D, we have been running a project called “Talking with Machines” which aims to
understand how to design and build software and experiences for VUI. The project has
two strands. Firstly, a practical strand which builds working software in order to understand
the dominant platforms and their ecosystems. Secondly, a design research strand which
aims to devise a user experience language, set of design patterns and general approach
to creating voice interfaces independent of any particular platform or device.

The Methodology section of this paper describes a practical prototyping method we have
been developing for VUI, which is currently on its second iteration.

Key insights for VUI design is a broader, general set of recommendations we have

1 Figures from VoiceLabs’ 2017 Voice Report (5).

gathered while creating these prototypes that are useful to bear in mind while designing
voice interfaces.

METHODOLOGY

Figure 1: Our VUI prototyping process

At the beginning of our design research, we were faced with a problem: we needed
example use cases for VUI in order to work up some possible solutions to those cases.
We also needed a way to express and communicate our design ideas for those solutions.

We started by devising a scenario mapping technique to quickly identify possible use
cases for VUI. We then incrementally built a design process which allowed us to get from
those use cases to fully-featured software prototypes, with intermediate steps that build in
complexity and help shape and refine an application idea. We have used a number of
common concepts from HCI (Human-Computer Interaction) while building this process.
Fidelity, as described by Preece et al (4): “[a] low-fidelity prototype does not look very
much like the final product and does not provide the same functionality” whereas “[a] high-
fidelity prototype looks like the final product and/or provides more functionality than a low-
fidelity prototype”. The role playing step is influenced by IDEO’s “Experience Prototyping”
method(1): “a form of prototyping that enables design team members, users and clients to
gain first-hand appreciation of existing or future conditions through active engagement with
prototypes”.

The first iteration of this process was developed while initiating our VUI design research.
This is the second, refined during a prototyping project with colleagues from BBC
Children’s. Figure 1 shows a diagram of the process.

1. Scenario Mapping

Figure 2: Illustration of a scenario mapping board

This technique is a way to think about possible situations in which a VUI could be used.
Scenarios come before specific ideas for applications; they’re a way to think about the
reasons someone might have to use a VUI, and what kind of context they and the device
will be in when they’re using an application. One scenario may lead to several different
ideas for applications.

Scenario mapping is particularly useful in an R&D context where data about existing use
cases can be sparse when designing for a new or hypothetical technology. Mapping a
number of scenarios can be a effective way to quickly explore a problem space.

Thinking about scenario - the setting of an experience - is especially important for VUI.
Voice-driven devices, even more so than mobile, are embedded in a user’s existing social
situation and surroundings. We cannot assume that we have their undivided attention.

The Scenario Mapping Process

1.1 Categories
We build scenarios from ingredients in a number of categories. For our collaboration with
Children’s, we decided on the following set of categories based on existing research on
audience needs and experience from the previous iteration of this methodology.

• Who? Someone (or a group of people) using a VUI.

• Social context. Are they at home? At school? In a car?

• Emotional state. Are they inquisitive? Tired? Task-focused?

• Brand / character. Who is the user talking to? What kind of content?

• Tone of voice. Peppy? Sensitive? Teacher-like?

• Device(s). Amazon Echo? An in-car system? A smart radio?
However, categories are flexible and should be tailored for the needs of a given project.

1.2 Ingredients
Once a set of categories is identified, we populate them with concrete examples:
ingredients. These are then used to build scenarios. We do this by working in small
groups and writing as many examples onto sticky notes as we can bring to mind: for

example, “4 year old boys” for Who?, or “excitable” for Tone of voice. At this point, we go
for quantity rather than quality – the point is
to gather plenty of raw material for the
following steps.

1.3 Scenario building
Using the categories as column headings,
we stick ingredients in rows underneath them
that sound like plausible settings for a VUI
application: scenarios. An illustration of a
scenario mapping board showing two built
scenarios can be seen in Figure 2.

1.4 Application ideas
After building a few scenarios, we pick a
handful that look promising and see if they
prompt any ideas for specific applications.
Additionally, we often find that ideas emerge

early while building the scenarios, which we note down as we go along.

By the end of the scenario building process, we have some ideas for applications which
we then work up into prototypes at various levels of fidelity.

2. ‘Sticky note’ scripts

The first step we take when prototyping a voice experience is to map out a rough script
with sticky notes. We draw out speech bubbles on a note each for everything said by a
person or machine, and colour code the notes for each actor2. We also add notes for other
kinds of event into the flow - for instance, a machine querying some data, or a person
adding ingredients to a recipe. These actions are also colour-coded by actor. It’s also
possible to add notes for multimodal events - things like information appearing on the
screens of nearby devices, or media being played on a TV. Figure 3 shows a sticky note
script from our Children’s VUI prototyping project.

We have found that sketching out an experience like this is a quick, useful way to see how
its flow and onboarding will work and which parts seem uneven or need more attention.
Using sticky notes means that it is easy to edit and re-order sections as needed.

3. Role playing

2 We use the term ‘actor’ here to denote a single, discrete voice or conversational entity.

We have found that the single most useful
step in prototyping a VUI is to role-play it in a
group setting. Having a ‘working’ version of

an experience immediately gives us a feel for what works and what doesn’t – given that
the end experience will be voice-driven, it makes sense to test in voice as early as
possible. This is roughly equivalent to click-through wireframes for a screen-based
experience.

Each person in the team takes a role, read from the sticky note scripts. These can include:
system voice, triggered sound effects, props (e.g paper sketches of tablet screens), and
other machine tasks (e.g making queries against data sources or running scripts, using
categories of sticky note as a guide). The role of user should be played by someone
unfamiliar with the idea – they should be ‘using’ the prototype in as real a way as possible.
The whole team then act out the script. This enables us to get early feedback and
observations on how the experience flows and any pressure points or parts where the
‘user’ feels lost or unclear about what’s happening.

We use the results of the role-play to drive iterations of our sticky note scripts.

4. Written script

After a few iterations of a sticky script, we write a full script of an experience in a similar
format to that of a play or radio drama. This step is more applicable to narrative-led
experiences, but can also be useful for data-driven applications if they contain long-
running conversations. Every word said by a machine, and approximations of what we
think people might say during an experience should be part of this script. Branches can be
made from page to page, like an adventure gamebook, for more complex flows.

This written script is a good prototype in its own right; a facilitator can use it in a user-
testing session to run an experience prototype with participants taking the role of user.

Running the script through with humans and machines
It’s important to keep hearing the script read out loud as it develops - some things which
look fine on the page sound strange when spoken, and hearing it out loud helps to get a
feel for the cadence of an experience and any parts which seem overly terse or verbose.

We found that using humans to do the reading through every time changes were made to
a script was quite a time-consuming process, so we created a tool using Python and
macOS native text-to-speech to generate computer-voiced read-throughs of scripts during
development. This technique should be considered a poor second to using natural human
speech; its purpose is to give a rough idea for how a script sounds before stepping up to
‘real’ speech. In this way, when we get to a read-through, a lot of the small problems with a
script are resolved and we can use people’s time to resolve larger or more subtle issues
with a script that machine-reading can’t catch.

5. Software Prototypes

The highest-fidelity prototype we make is in software – either for a VUI device itself, or a
platform which allows us to try things not yet possible on VUI devices. For example, for our
recent work with Children’s, we built one working prototype on Alexa and one on iOS.

Figure 3: A sticky note script

The iOS prototype uses record and playback of the user’s voice, a feature not currently
present on current VUI devices. However, the platform is irrelevant in this case – we’re
testing the experience, not the platform – and in user-testing sessions we hide the phone
and use a hands-free speaker to focus attention on the sound.

This is the prototyping method which gives a result most illustrative of a final product.
Building on a target platform also allows us to test with a larger group of testers in their
own homes and, with a disciplined development process, opens the possibility to iterate
from a prototype to a releasable product.

KEY INSIGHTS FOR VUI DESIGN

As a result of developing these techniques and working through the Children’s prototyping
project, we have collected a number of key insights. We present those insights here as
seven recommendations for the creators of VUI experiences.

1. Tone of voice

When an interface’s only line of communication with its user is voice, we have found that
the tone of that voice is overridingly important – as important as the choices made about
colour, typeface and layout in a visual application.

This means thinking about the vocabulary and writing style used in an application’s voice
prompts and responses. An application mostly concerned with responding to direct
requests for specific information should be pithy and concise in its responses. An
application designed for people in a more relaxed, open frame of mind can be more
discursive and chatty.

2. System voice vs talent voice
Our research shows us that the system voices on Alexa or Home are optimised for short,
concise answers to requests, and not suitable for reading out long passages of text,
especially if that reading requires natural intonation. Using recorded human voice allows
for natural-sounding speech at the cost of production overhead. Additionally, once a voice
is recorded, it can’t be changed. A voice application using recorded talent speech will
never be as adaptable as one which generates dynamic speech.

When using a recorded talent voice instead of a synthesised voice, considerations should
also include timbre, intonation and delivery style.

3. The expectation of ‘smart’

In an earlier project, we prototyped and user-tested some conversational interfaces (CUI),
mostly over text messaging channels, but with some VUI. One of the most striking things
we found from that testing was the expectation that users had about the intelligence of the
entity with which they were conversing. Since people were communicating with something
that appeared to be smart enough to respond to natural language and to have a
personality, they assumed that it was also smart enough to be able to answer the kinds of
question they’d ask another person. This is a effect observed elsewhere in HCI research,
and is discussed in e.g. Taylor (2), Vinayagamoorthy et al (3).

This is an important thing to bear in mind when designing conversational systems,
because it’s very rare that such a system will be able to deal with spontaneous, open
language. Most applications will have a limited domain of knowledge: for example, a story
about witches or the programme catalogue of a large broadcaster. It’s important to
communicate to users the limits of a system without driving them away.

4. The importance of suitable data sources

Another finding from our previous CUI project is that while it seems intuitive to be able to
ask questions against a large dataset (for example: the news, or a list of programmes),
these types of application can only be built if there’s an extensive, well-tagged and
searchable data source to query. In these cases, the interface itself and parsing the user’s
intent is a relatively straightforward problem to solve - the hard problems are collating,
sifting and re-presenting the data required to answer the user’s questions. These kinds of
application are a lot more about data processing than they are about natural language.

5. Dealing with a limited vocabulary and letting the user know what they can say

Most VUI systems don’t allow completely free, spontaneous speech as input; developers
must register upfront, the collection of phrases a user is expected to say in order to
interact with an application and keep it updated as unexpected variations arise.

Given that this limitation exists, there is a problem in communicating to people what they
can say to navigate an application. Some developers choose to do this upfront, listing
possible commands when an application starts for the first time. However, this can sound
clunky, provides friction for people wanting to get to the central experience of an
application and requires recall at the point where an interaction becomes available.

Another way to do this is to wait until an interaction is about to happen, and then tell a
person what they can say: “you can say forward, backward or stop.” However, this can
seem mechanical, and interrupts the flow of a longer conversation or fictional piece.

Example solutions

• In a fictional piece, a choice could be set up as an argument between two characters

• A set of choices that is naturally limited, e.g numbers from 1-10 or star signs.

6. Turn-taking and letting the user know when they can speak

The ‘ding’
This seems like the most straightforward way to let someone know they can speak - “after
the ding, say your choice”. However, there’s subtlety here: does a voice say “ding” or play
the sound itself when referring to it? Is this confusing to the user? They have to
understand the difference between a referential ding and a real one. If the word “ding” is
said, do users understand that this means a “ding” sound when it’s played?

Audio mix
A more subtle way of letting the user know that they can speak in fictional, radio-like
pieces is by using the audio mix. If music or sound beds are used during the action, these
can be dropped out at the time a character or narrator is addressing the user, signifying
that focus has moved away from the fiction and that the user is alone with the narrator.

System voice
The system voice itself can be useful as an cue that the user is being asked a direct
question: it’s the voice that users are accustomed to speaking to on a VUI device. In a
piece that includes many voices, the system voice can be used as a ‘bridge’ or ‘mediator’
between the user and the fiction world.

7. Modes of address and managing the user, narrator and other characters

When a person interacts with a voice application, they’re always interacting with at least
one voice - either synthesised or recorded. For simple applications, one voice is often
enough - although Google Home’s model of handing off to other voices for different
functions - “OK Google, talk to Uber about a ride” is interesting, and helps someone
understand when they’re shifting contexts.

For more complex, narrative-driven applications, it’s likely there will be more than one
character talking over the course of the experience. In these applications, managing how
the characters talk to one another and how the user is addressed becomes a challenge
with some subtleties.

In this case, there are a few questions that are useful to consider:

• is the user present in the piece, or an unnoticed observer?

• is the user speaking to characters directly (participating in the action) or using voice to
choose branches in a storyline (at a level removed from the action)?

• can all the characters in the piece address the user, or just one?
Using a narrator / mediator to communicate with the user can simplify the model, but it’s
still important to consider how the user will know when a character is addressing them
directly and when characters are talking between themselves (we call this ‘turning to the
user’).

CONCLUSION

In this paper, we have described a prototyping method which we developed to address our
own problem: as designers attempting to prototype and describe VUI experiences, there
was very little material we could draw on to inform our approach. We intend to continue to
develop and refine this methodology by working through live prototyping projects with
collaborators inside and outside the BBC.

We have presented some of our key findings as a result of this prototyping work in the
second section of this paper. We use these findings as ‘rules of thumb’ in our own design
practise; we hope to gather more of these findings as our work continues and build
towards a set of best practises for VUI design.

We present both of these sections in the hope that they will prove useful to other
designers encountering the lack of literature that prompted us to initiate this project.

REFERENCES

1. Buchenau, M. and Fulton, J., 2000. Experience Prototyping. Proceedings of the 3rd
conference on Designing interactive systems: processes, practices, methods, and
techniques. pp 424 to 433.

2. Taylor, A. S, 2009. Machine intelligence. Proceedings of ACM CHI 2009 Conference on
Human Factors in Computing Systems. pp 2109 to 2118.

3. Vinayagamoorthy, V. and Gillies, M. and Steed, A. and Tanguy, E. and Pan, X. and
Loscos, C. and Slater, M., 2006. Building Expression into Virtual Characters. Proceedings
of VRCIA 2006 ACM International Conference on Virtual Reality Continuum and its
Applications.

4. Preece, J., Rogers, Y. and Sharp, H., 2015. Interaction Design: Beyond human-
computer interaction (4th ed). pp 314 to 320.

5. Marchick, A., 2017. The 2017 Voice Report by VoiceLabs.
http://voicelabs.co/2017/01/15/the-2017-voice-report/

ACKNOWLEDGEMENTS

Many thanks to Lisa Vigar, Liz Leakey, Mark O’Hanlon and Suzanne Clarke from BBC
Children’s who were excellent collaborators on the pilot prototyping project which helped
validate and shape our methodology.

We are grateful to Sacha Sedriks, Vinoba Vinayagamoorthy and Tristan Ferne from BBC
R&D for their suggestions and support while writing this paper.

http://voicelabs.co/2017/01/15/the-2017-voice-report/

