

ON THE RELEVANCE OF SERVERLESS CLOUD COMPUTING TO TV SERVICE
OPERATIONS

M. Rizzo

BT Group plc, UK

ABSTRACT

Recent years have seen the emergence of Serverless computing, a model

in which engineers deploy software into the cloud, but leave it to the cloud

provider to provision and manage underlying servers. This enables

delivery teams to focus on achieving business objectives with fewer

distractions. Through use of a fine-grain Pay-As-You-Go (PAYG) model, it

also enables better matching of capacity costs to real demand.

In this paper we explain why the Serverless model is particularly attractive

for TV services, and how it can reduce operational overheads and lower

barriers to entry. We start by covering the key concepts underpinning

Serverless, with specific reference to compute, database and media

encoding services. We then show why TV is well-placed to benefit, basing

this on the demand patterns that TV places on IT resources and drawing

on the concept of elasticity of capacity. For illustrative purposes the paper

features a specific Pay-Per-View (PPV) use-case.

INTRODUCTION

Cloud computing has grown rapidly over the past decade, with public cloud providers such

as AWS, Azure, and GoogleCloud firmly establishing themselves as viable infrastructure

platforms in multiple industries. Numerous TV service vendors and operators e.g.

Izrailevsky (1), have embraced cloud with great success, enabling them to deliver highly

scalable and available solutions with global reach, and to manage costs by paying only for

resources they consume on a PAYG basis.

With the concept of Infrastructure-as-a-Service (IaaS) firmly established in the industry,

cloud providers are increasingly promoting a Serverless approach which, at its simplest

level, means that cloud customers do not need to be aware of the servers that underpin

their services. In this paper we explain why Serverless is an attractive paradigm for many

TV use cases, and how it has the potential to transform the industry by lowering barriers to

entry and operational overheads. We start by covering the key principles and benefits of

Serverless, with specific reference to compute, database and media services. We then

explain why the demand patterns that TV services place on IT resources often make them

well-placed to benefit from Serverless, drawing on the concept of Elasticity of Capacity.

Following an illustration based on a hypothetical PPV scenario, we conclude with an

assessment of current limitations, possible future evolution, and relevance to the industry.

SERVERLESS

Cloud providers broadly offer services at three

levels of abstraction (see Figure 1).

Earlier cloud offerings focussed on providing
raw compute services, complemented by a
small number of managed services, such as
object storage and message queueing (see
Barr, J. (2) for an AWS perspective). While
such offerings deliver many benefits, they
require considerable effort to maintain because
the cloud customer retains responsibility for
server configuration and software i.e.
essentially unmanaged servers.

Recognising this, cloud providers continued

to innovate to reduce maintenance overhead.

Figure 1 – Increasing levels of machine (VM)

They added and supported pre-built virtual images for popular software abstraction for

cloud services stacks, and introduced services to alleviate the burden associated with

managing servers for common needs such as relational databases and web applications.

However these still require the cloud customer to be aware of the underlying servers, and

to manage them for availability and scalability.

The next logical step for public cloud providers was to offer an even higher level of

abstraction to customers wherein underlying servers are no longer visible to the cloud

customer. This gave rise to the Serverless abstraction, in which scaling and high

availability are handled by the cloud provider for a wide range of services including core

services like compute, database, and storage, as well as specialist services like media

processing and machine learning.

Benefits of Serverless

Eliminating the need to manage servers has many benefits: services are highly available

and scalable by default, and with no additional effort. Consequently, engineering teams

can spend a greater proportion of their time focussing on the business problem they need

to solve, and operations teams can handle more services with less resource. AWS

Lambda1 is an example of a serverless compute service wherein engineers only need to

supply the code for a function that is to be executed in response to a specified event. The

Lambda service automatically provisions resource and distributes load across multiple

AWS availability zones (AZs) to meet demand and provide high availability.

1 The paper makes numerous references to AWS services and concepts. This is strictly for illustrative

purposes, and the general principles are equally applicable to other public cloud providers. The reader is

referred to the AWS White Paper (3) for an overview of AWS, as well as the AWS web-site at

aws.amazon.com.

Serverless also removes the need for accurate demand forecasting, and helps to improve

cost optimisation. Crucially the PAYG model is applied at a service feature level, enabling

fine grain control over spend e.g. with Lambda, the customer is only billed for execution

time (measured in tenths of a second) with no charge for idle time. As we shall see, this

can have a very significant impact on total cost-to-serve under certain demand profiles.

THE NATURE OF DEMAND FOR IT RESOURCES IN TV

TV has numerous use cases that exhibit extreme peak-to-trough demand patterns, often

with infrequent high peaks and long periods of low activity. A common example is that of a

popular live event on a sport channel, where viewing can easily multiply by one or two

orders of magnitude in the space of a few minutes. Another example would be the

concentration of channel joins around programme boundaries, further exacerbated by

automatic PVR joins which are synced to a common clock.

These patterns may not present much of an issue in the traditional broadcast world. But in

the worlds of IPTV and OTT it is an entirely different story because the solutions that

underpin them e.g. for content discovery and playback, rely heavily on individual

interactions between end-user clients and back-end systems occurring at the time of use.

Such patterns are not limited to consumption of linear TV. VoD viewing can vary hugely by

time of day, resulting in significant load variations on content discovery and playback. PPV

events drive large infrequent peaks on authentication and purchasing components. And at

an operational level, requests for adding new content to a VoD catalogue can often arrive

in waves that coincide with the start of a new content contract, leading to big variations in

capacity required for transcoding and packaging media.

It is easy to see how the combination of inflexible infrastructure management with these

demand patterns leads to poor resource utilisation and a high cost-to-utilisation ratio. In the

extreme, if an operator (i) dimensions their capacity to meet peak demand, (ii) provides

additional redundant capacity to meet availability targets, and (iii) segregates resources for

different solution components, then this results in long periods of significant unused

capacity. When extrapolated to cover a few hundred components, replicated in multiple

environments (test, reference, production etc) this turns into a very expensive inefficiency,

which is then further compounded by inaccuracies in demand forecasting.

There are three pre-requisites that need to be met in order to eliminate such inefficiency.

First it must be possible to flex the capacity associated with a particular component –

which in turn means that the component must be horizontally scalable. Second it must be

possible for resources freed up by one component to be re-used by another. And third it

must be possible to scale in and out automatically in response to changes in demand.

Cloud computing offers a number of different approaches to address these pre-requisites.

The next section introduces the concept of Elasticity of Capacity and defines a framework

that can be used to assess the relative strengths of different approaches in this regard.

ELASTICITY OF CAPACITY

We define elasticity of capacity as the extent to which paid-for2 capacity matches demand.

Figure 2 illustrates this concept using three different scenarios. Scenario (a) denotes a

perfectly inelastic system i.e. where the elasticity of capacity is 0, which corresponds to a

fixed capacity system that often exceeds demand and may sometimes fall short. Scenario

(c) depicts a perfectly elastic system i.e. elasticity of capacity is 1, wherein the capacity

curve moves in perfect unison with the demand curve. Such a system would be ideal, but

very difficult to achieve in practice! Scenario (b) depicts a more realistic “moderately

elastic” system where capacity adapts to demand, but does so in coarse steps and timed

to occur before/after an increase/decrease in resource is required.

 Demand Paid-for capacity Excess capacity Capacity shortfall

Figure 2 – Elasticity of Capacity

The extent to which paid-for capacity matches demand is determined by two factors,

namely granularity of resource adaptation and timeliness of resource adaptation.

Granularity of resource adaptation refers to the smallest size of resource unit that can be

added or subtracted to capacity in a single step i.e. the smallest amount by which the yaxis

value can increase or decrease at a point in time. For example it might be a VM instance,

or a unit of throughput to a database.

Timeliness of resource adaptation is a measure of how early or late the resource is

increased or decreased in relation to the change in demand e.g. in the case of a VM

resource, time needs to be allowed for the VM to be initialised before it can be considered

ready to receive requests, and time is subsequently needed to tear it down when no longer

needed. Timeliness of adaptation can also be impacted by the granularity of time units in

which resource is billed e.g. if a resource is paid for by the hour, then tearing that resource

down after 20 minutes results in an extra 40 minutes of deviation from the demand curve.

2 It is important to focus on “paid-for” capacity (as opposed to provisioned capacity) as ultimately this is what

counts. Capacity which is de-provisioned but billed for (e.g. because billing occurs on hourly boundaries)

offers no elasticity benefit to the operator.

time time time

c) Perfectly elastic ((a) Inelastic (b) Moderately elastic

It is important to recognise that while scalability is a pre-requisite for elasticity, they are not

the same thing. Scalability is about a system’s potential to be enlarged to accommodate

growth in demand, but it does not mandate that this be realised in an elastic manner e.g. a

scalable system might allow for the addition of more fixed capacity in advance of an

anticipated increase in peak demand.

Ranking compute by elasticity

Having established this framework we can rank the elasticity of capacity for different

compute options3. Figure 3 illustrates this using a selection of AWS compute services.

In the bottom left corner we have the

inelastic fixed capacity option i.e. a fixed

number of EC2 instances.

Option 2 adds auto-scaling, which enables

instances to automatically be added and

subtracted as required to meet demand.

Here the granularity of resource adaptation is

effectively determined by the instance type.

The “smaller” the instance type, the more

granular the adaptation, and the more elastic

the system. This should not be taken to

mean that smaller instance types are always

preferable. As we shall see, higher elasticity

does not necessarily result in the cheapest

overall solution, and this very much depends

on the demand profile.

Figure 3 – Ranking of AWS Compute services

Option 3 is AWS Fargate, a service that can be used to host containerized applications.

Here the granularity of resource adaptation is a task, with per-second billing (minimum 1

minute) applied on the basis of vCPU and memory resources allocated, making it finer

grain than auto-scaling. Timeliness of adaptation is also better, as containers can be

instantiated a lot more quickly than new server instances. Fargate is almost serverless in

that it eliminates the need to manage cluster servers, but it still requires operators to

explicitly configure scaling and placement policies for containers.

Finally Option 4 is AWS Lambda, a service wherein resource is provisioned to execute a

single function, with billing applied in units of 10ths of a second on the basis of memory

allocated. A key improvement here is that idle time is substantially reduced: while an EC2

instance or Fargate container might spend significant billable time waiting for a request to

react to, this is not the case with Lambda.

We now consider the implications of this ranking with reference to a specific use case.

3 While the focus for this paper is on compute services it is worth noting that the same framework can also be

applied to databases, storage services, and media services e.g. in AWS we can use it to establish that S3 is

more elastic than an object-store based on EBS, or that DynamoDB is more elastic than RDS.

ILLUSTRATION: PPV PURCHASE

This illustration is based around a PPV use case, wherein a TV operator is introducing a

service that will make 10 live events available on a PPV basis each year. The purchase

window for each event opens 30 days ahead of the event and lasts until the end of the

event. It is forecast that 1 million customers will purchase a ticket to each event, with a

peak purchase rate of 10 transactions per second (tps) over most of the purchase window,

but with significantly higher peak demand in the hours leading up to the event estimated at

4,000 tps. It is further assumed that there is no more than one event per day, and that the

service needs to be highly available at all times.

The focus for this illustration is on the compute aspects of

the PPV purchase API offered to end customers. On receipt

of a purchase request (via an API Gateway) this performs

some checks and then creates a ledger entry (in a database

table) which in turn feeds an event into an existing

entitlement engine (which is outside the scope of this

analysis). Figure 4 shows a simplified view of the common

elements of the architecture, with the Compute block acting

as a placeholder for the various compute options under

consideration.

Comparison of compute options

We now consider the practical implications of “filling” the

compute block using each of the AWS-based options

we identified in the previous section. For each option we

estimate fixed and variable cloud cost estimates (Table 1)

based on AWS North Virginia pricing, and consider the

relationship between cost and demand. We also compare

operational overheads in each case.

Figure 4 – PPV Purchase API

In Option 1 (EC2 fixed capacity) we provision capacity to meet peak demand at all times,

including redundant capacity to meet availability targets. If we assume that capacity will be

spread across three AZs, and that we should tolerate a loss of one AZ, then each AZ

should have enough capacity to take 50% of the total peak load i.e. 2,000 tps. We also

allow for some margin of safety in the event that demand exceeds the forecast estimate.

Further design considerations here include selection of EC2 instance type/size to use4, the

number of instances per AZ, and the type and amount of disk storage required. These

would ideally be optimised through repeated experimentation and fine tuning. For this

example we assume (based on knowledge from similar use cases) that a single t2.xlarge

with 300GB general purpose SSD will be used in each AZ. Finally an Elastic Load

Balancer would be required to distribute load across the three AZs.

4 AWS provides a range of instance families optimised for different use cases.

In addition to cloud charges, there are server maintenance overheads e.g. applying

patches to OS and software, restarting hosts that have been degraded etc. It is also

necessary to monitor utilisation over

time, and to regularly re-assess the

instance type and configuration; in the

event that demand exceeds capacity

then excess requests will not be

serviced, whilst conversely excess

capacity is still chargeable.

Table 1 – PPV Cost Estimate Comparison

With Option 2 (EC2 + autoscaling) we still need to allow for loss of an AZ, but do not

need to provision full capacity up front. Rather we start with a minimal configuration to

handle off-peak load and then use an auto-scaling policy (based on a suitable utilisation

metric) to add instances as demand increases. Moreover the upper capacity limit can be

set higher than forecast demand to accommodate unforeseen excess demand.

Again design choices need to be made in relation to instance type and auto-scaling policy

configuration. One immediate problem is that, for most AWS instance families, the smallest

instance type is actually quite large! The only family with smaller instance types is the “t2”

burstable family. These need time to accumulate CPU credits before they can burst to

support higher loads (or can be set up to burst-on-demand, but with higher charges) –

which is not a good fit with auto-scaling adding fresh instances!

One option here is to create a mix of instance types in two separate auto-scaling groups

under a common load balancer. For this exercise we assume a setup in which there is

always one t2.medium per AZ to cater for off-peak load, and then add m5.large instances

(in groups of three to maintain HA) as demand ramps up. Similar operational overheads as

for option 1 apply.

Perhaps surprisingly the variable cost element here is still quite small. The reason for this

is that scaling out is only required for a few hours per event, with the system running at

baseline configuration for more than 99% of the time overall. The main benefit that

autoscaling brings to this case is simply a reduction of the baseline fixed cost5.

With Option 3 (Fargate) we are no longer concerned with instance types, and only need to

specify how much vCPU and memory to allocate to the task that will host our container.

We also need to configure task placement and scaling policies to scale in/out the number

of containers across multiple AZs as demand varies. The granularity of resource

adaptation is much finer than for EC2, and timeliness of adaptation is better. This enables

us to use an even lower baseline configuration, resulting in a more significant variable

element. Operational overhead is lower because there is no need to patch servers or

replace AMIs.

Finally, with Option 4 (Lambda) we simply deploy the function code for our Purchase API,

specifying a memory size as the only parameter. Lambda automatically takes care of

spreading load across multiple AZs, and scaling underlying capacity as required. Based on

5 It should be emphasised that this result is specific to the PPV use case under consideration. The variable

cost element of auto-scaling could be more significant in other use cases.

 EC2 fixed Autoscale Fargate Lambda

Fixed $6,200 $2,550 $1,330 $0

Variable Negligible < $50 $370 $35

experimentation we have ascertained that, with a 1GB memory allocation, the function

would execute in under 200ms in the vast majority of cases. At the time of writing, Lambda

is priced at $0.20 per million calls plus $0.00001667 per GB-second, giving rise to a total

cost estimate of just $35 which is entirely linearly proportional to demand.

In this example we assumed that the use of three AZs within a single region provided

sufficient redundancy to deliver the required availability. If required, even higher availability

can be achieved using multiple regions. Whilst this adds complexity from a data

consistency perspective, it is worth noting that from a compute perspective Lambda would

add minimal cost, because all of the cost is variable and linked to actual execution time. In

contrast server-based solution costs would double for an active-active setup.

CONCLUSION

We have seen how Serverless reduces cloud costs in extreme peak-to-trough demand

cases, eliminates overheads associated with managing servers, and makes it easier to

maintain high scalability and availability. We have also highlighted some TV application

areas that can benefit, and illustrated the potential of Serverless using a PPV case.

Given the benefits, it is tempting to argue for use of Serverless in any situation. However,

high elasticity does not always translate into lowest cost. The PPV case, while reflective of

a real situation, was deliberately chosen to demonstrate the effectiveness of Serverless

with extreme peak-trough demand profiles. But applications that consistently place an

even load on resources (with little or no idle time) are probably better off with less elastic

services because the unit price per resource/time is typically lower. Rather than adopt a

Serverless-first approach, it is therefore better to consider each use case on its own

merits. A simple cost model will often suffice to make this judgment call.

Another consideration is that Serverless solutions are not infinitely scalable. There may be

limits on how far they can scale out, or the rate at which they can scale out. In this respect

it would be useful if cloud providers enabled operators to reserve capacity in advance of an

anticipated spike. An interesting (if complex) alternative might be hybrid deployment,

wherein a solution could switch between Serverless functions and containers to handle

significant shifts in demand profile. This could help to overcome any Serverless capacity

limits whilst achieving better cost optimisation for sustained peak loads.

A potential limitation for some cases is that Serverless implementation constraints can

reduce flexibility for engineers e.g. Lambda only supports specific versions of a number of

programming languages, and limits the time available for the function to execute.

For new operators, Serverless helps to lower barriers to entry by eliminating the need for

upfront capital, and linking cost to actual service consumption. It also enables engineers to

focus more time on core business problems. We have focussed primarily on compute in

this paper, but the opportunities are much broader e.g. Serverless transcoding is billed on

length of jobs as opposed to servers, databases are billed on storage and throughput etc.

See Sbarski (4) for an example of how a start-up used Serverless to build a video-based

learning business.

For existing operators, Serverless can lower costs and overheads significantly, but only if

existing services are re-architected to benefit. A simple lift-and-shift approach for migration

to the cloud will not suffice. This means that deployment design needs to be factored in

early, and that cloud skills are needed across all functions.

REFERENCES

1. Izrailevsky, Y., 2016. Completing the Netflix Cloud Migration, Netflix Media Center.

https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration

2. Barr, J., 2009. The AWS Blog: The First Five years, AWS News Blog.

https://aws.amazon.com/blogs/aws/aws-blog-the-first-five-years/

3. AWS White Paper, 2017. Overview of Amazon Web Services.

https://docs.aws.amazon.com/aws-technical-content/latest/aws-overview/aws-

overview.pdf

4. Sbarski, P., 2017. Serverless Architectures on AWS. Manning Publications Co.

