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ABSTRACT  

Recent years have seen the emergence of Serverless computing, a model 

in which engineers deploy software into the cloud, but leave it to the cloud 

provider to provision and manage underlying servers. This enables 

delivery teams to focus on achieving business objectives with fewer 

distractions. Through use of a fine-grain Pay-As-You-Go (PAYG) model, it 

also enables better matching of capacity costs to real demand.  

In this paper we explain why the Serverless model is particularly attractive 

for TV services, and how it can reduce operational overheads and lower 

barriers to entry. We start by covering the key concepts underpinning 

Serverless, with specific reference to compute, database and media 

encoding services. We then show why TV is well-placed to benefit, basing 

this on the demand patterns that TV places on IT resources and drawing 

on the concept of elasticity of capacity. For illustrative purposes the paper 

features a specific Pay-Per-View (PPV) use-case.  

  

INTRODUCTION  

Cloud computing has grown rapidly over the past decade, with public cloud providers such 

as AWS, Azure, and GoogleCloud firmly establishing themselves as viable infrastructure 

platforms in multiple industries. Numerous TV service vendors and operators e.g. 

Izrailevsky (1), have embraced cloud with great success, enabling them to deliver highly 

scalable and available solutions with global reach, and to manage costs by paying only for 

resources they consume on a PAYG basis.  

With the concept of Infrastructure-as-a-Service (IaaS) firmly established in the industry, 

cloud providers are increasingly promoting a Serverless approach which, at its simplest 

level, means that cloud customers do not need to be aware of the servers that underpin 

their services. In this paper we explain why Serverless is an attractive paradigm for many 

TV use cases, and how it has the potential to transform the industry by lowering barriers to 

entry and operational overheads. We start by covering the key principles and benefits of 

Serverless, with specific reference to compute, database and media services. We then 

explain why the demand patterns that TV services place on IT resources often make them 

well-placed to benefit from Serverless, drawing on the concept of Elasticity of Capacity. 

Following an illustration based on a hypothetical PPV scenario, we conclude with an 

assessment of current limitations, possible future evolution, and relevance to the industry.  



         

SERVERLESS  

Cloud providers broadly offer services at three 

levels of abstraction (see Figure 1).  

Earlier cloud offerings focussed on providing 
raw compute services, complemented by a 
small number of managed services, such as 
object storage and message queueing (see 
Barr, J. (2) for an AWS perspective). While 
such offerings deliver many benefits, they 
require considerable effort  to maintain because 
the cloud customer retains responsibility for 
server configuration and software i.e. 
essentially unmanaged servers.  

Recognising this, cloud providers continued  

to innovate to reduce maintenance overhead.   

Figure 1 – Increasing levels of machine (VM) 

They added and supported pre-built virtual images for popular software abstraction for 

cloud services stacks, and introduced services to alleviate the burden associated with 

managing servers for common needs such as relational databases and web applications. 

However these still require the cloud customer to be aware of the underlying servers, and 

to manage them for availability and scalability.  

The next logical step for public cloud providers was to offer an even higher level of 

abstraction to customers wherein underlying servers are no longer visible to the cloud 

customer. This gave rise to the Serverless abstraction, in which scaling and high 

availability are handled by the cloud provider for a wide range of services including core 

services like compute, database, and storage, as well as specialist services like media 

processing and machine learning.  

Benefits of Serverless  

Eliminating the need to manage servers has many benefits: services are highly available 

and scalable by default, and with no additional effort. Consequently, engineering teams 

can spend a greater proportion of their time focussing on the business problem they need 

to solve, and operations teams can handle more services with less resource. AWS 

Lambda1 is an example of a serverless compute service wherein engineers only need to 

supply the code for a function that is to be executed in response to a specified event. The 

Lambda service automatically provisions resource and distributes load across multiple 

AWS availability zones (AZs) to meet demand and provide high availability.  

                                            
1  The paper makes numerous references to AWS services and concepts. This is strictly for illustrative 

purposes, and the general principles are equally applicable to other public cloud providers. The reader is 

referred to the AWS White Paper (3) for an overview of AWS, as well as the AWS web-site at 

aws.amazon.com.  



         

Serverless also removes the need for accurate demand forecasting, and helps to improve 

cost optimisation. Crucially the PAYG model is applied at a service feature level, enabling 

fine grain control over spend e.g. with Lambda, the customer is only billed for execution 

time (measured in tenths of a second) with no charge for idle time. As we shall see, this 

can have a very significant impact on total cost-to-serve under certain demand profiles.  

THE NATURE OF DEMAND FOR IT RESOURCES IN TV  

TV has numerous use cases that exhibit extreme peak-to-trough demand patterns, often 

with infrequent high peaks and long periods of low activity. A common example is that of a 

popular live event on a sport channel, where viewing can easily multiply by one or two 

orders of magnitude in the space of a few minutes. Another example would be the 

concentration of channel joins around programme boundaries, further exacerbated by 

automatic PVR joins which are synced to a common clock.  

These patterns may not present much of an issue in the traditional broadcast world. But in 

the worlds of IPTV and OTT it is an entirely different story because the solutions that 

underpin them e.g. for content discovery and playback, rely heavily on individual 

interactions between end-user clients and back-end systems occurring at the time of use.  

Such patterns are not limited to consumption of linear TV. VoD viewing can vary hugely by 

time of day, resulting in significant load variations on content discovery and playback. PPV 

events drive large infrequent peaks on authentication and purchasing components. And at 

an operational level, requests for adding new content to a VoD catalogue can often arrive 

in waves that coincide with the start of a new content contract, leading to big variations in 

capacity required for transcoding and packaging media.  

It is easy to see how the combination of inflexible infrastructure management with these 

demand patterns leads to poor resource utilisation and a high cost-to-utilisation ratio. In the 

extreme, if an operator (i) dimensions their capacity to meet peak demand, (ii) provides 

additional redundant capacity to meet availability targets, and (iii) segregates resources for 

different solution components, then this results in long periods of significant unused 

capacity. When extrapolated to cover a few hundred components, replicated in multiple 

environments (test, reference, production etc) this turns into a very expensive inefficiency, 

which is then further compounded by inaccuracies in demand forecasting.  

There are three pre-requisites that need to be met in order to eliminate such inefficiency. 

First it must be possible to flex the capacity associated with a particular component – 

which in turn means that the component must be horizontally scalable. Second it must be 

possible for resources freed up by one component to be re-used by another. And third it 

must be possible to scale in and out automatically in response to changes in demand.  

Cloud computing offers a number of different approaches to address these pre-requisites. 

The next section introduces the concept of Elasticity of Capacity and defines a framework 

that can be used to assess the relative strengths of different approaches in this regard.  



         

ELASTICITY OF CAPACITY  

We define elasticity of capacity as the extent to which paid-for2 capacity matches demand.  

Figure 2 illustrates this concept using three different scenarios. Scenario (a) denotes a 

perfectly inelastic system i.e. where the elasticity of capacity is 0, which corresponds to a 

fixed capacity system that often exceeds demand and may sometimes fall short. Scenario 

(c) depicts a perfectly elastic system i.e. elasticity of capacity is 1, wherein the capacity 

curve moves in perfect unison with the demand curve. Such a system would be ideal, but 

very difficult to achieve in practice! Scenario (b) depicts a more realistic “moderately 

elastic” system where capacity adapts to demand, but does so in coarse steps and timed 

to occur before/after an increase/decrease in resource is required.  

 

 Demand  Paid-for capacity  Excess capacity  Capacity shortfall 

  

Figure 2 – Elasticity of Capacity  

The extent to which paid-for capacity matches demand is determined by two factors, 

namely granularity of resource adaptation and timeliness of resource adaptation.  

Granularity of resource adaptation refers to the smallest size of resource unit that can be 

added or subtracted to capacity in a single step i.e. the smallest amount by which the yaxis 

value can increase or decrease at a point in time. For example it might be a VM instance, 

or a unit of throughput to a database.  

Timeliness of resource adaptation is a measure of how early or late the resource is 

increased or decreased in relation to the change in demand e.g. in the case of a VM 

resource, time needs to be allowed for the VM to be initialised before it can be considered 

ready to receive requests, and time is subsequently needed to tear it down when no longer 

needed. Timeliness of adaptation can also be impacted by the granularity of time units in 

which resource is billed e.g. if a resource is paid for by the hour, then tearing that resource 

down after 20 minutes results in an extra 40 minutes of deviation from the demand curve.  

                                            
2 It is important to focus on “paid-for” capacity (as opposed to provisioned capacity) as ultimately this is what 

counts. Capacity which is de-provisioned but billed for (e.g. because billing occurs on hourly boundaries) 

offers no elasticity benefit to the operator.  

time time time 

c) Perfectly elastic ( ( a)  Inelastic ( b) Moderately elastic 



         

It is important to recognise that while scalability is a pre-requisite for elasticity, they are not 

the same thing. Scalability is about a system’s potential to be enlarged to accommodate 

growth in demand, but it does not mandate that this be realised in an elastic manner e.g. a 

scalable system might allow for the addition of more fixed capacity in advance of an 

anticipated increase in peak demand.  

Ranking compute by elasticity  

Having established this framework we can rank the elasticity of capacity for different 

compute options3. Figure 3 illustrates this using a selection of AWS compute services.  

In the bottom left corner we have the 

inelastic fixed capacity option i.e. a fixed 

number of EC2 instances.  

Option 2 adds auto-scaling, which enables 

instances to automatically be added and 

subtracted as required to meet demand. 

Here the granularity of resource adaptation is 

effectively determined by the instance type. 

The “smaller” the instance type, the more 

granular the adaptation, and the more elastic 

the system. This should not be taken to 

mean that smaller instance types are always 

preferable. As we shall see, higher elasticity 

does not necessarily result in the cheapest 

overall solution, and this very much depends 

on the demand profile.   

Figure 3 – Ranking of AWS Compute services  

Option 3 is AWS Fargate, a service that can be used to host containerized applications. 

Here the granularity of resource adaptation is a task, with per-second billing (minimum 1 

minute) applied on the basis of vCPU and memory resources allocated, making it finer 

grain than auto-scaling. Timeliness of adaptation is also better, as containers can be 

instantiated a lot more quickly than new server instances. Fargate is almost serverless in 

that it eliminates the need to manage cluster servers, but it still requires operators to 

explicitly configure scaling and placement policies for containers.  

Finally Option 4 is AWS Lambda, a service wherein resource is provisioned to execute a 

single function, with billing applied in units of 10ths of a second on the basis of memory 

allocated. A key improvement here is that idle time is substantially reduced: while an EC2 

instance or Fargate container might spend significant billable time waiting for a request to 

react to, this is not the case with Lambda.  

We now consider the implications of this ranking with reference to a specific use case.  

                                            
3 While the focus for this paper is on compute services it is worth noting that the same framework can also be 

applied to databases, storage services, and media services e.g. in AWS we can use it to establish that S3 is 

more elastic than an object-store based on EBS, or that DynamoDB is more elastic than RDS.  



         

ILLUSTRATION: PPV PURCHASE  

This illustration is based around a PPV use case, wherein a TV operator is introducing a  

service that will make 10 live events available on a PPV basis each year. The purchase 

window for each event opens 30 days ahead of the event and lasts until the end of the 

event. It is forecast that 1 million customers will purchase a ticket to each event, with a 

peak purchase rate of 10 transactions per second (tps) over most of the purchase window, 

but with significantly higher peak demand in the hours leading up to the event estimated at 

4,000 tps. It is further assumed that there is no more than one event per day, and that the 

service needs to be highly available at all times.  

The focus for this illustration is on the compute aspects of 

the PPV purchase API offered to end customers. On receipt 

of a purchase request (via an API Gateway) this performs 

some checks and then creates a ledger entry (in a database 

table) which in turn feeds an event into an existing 

entitlement engine (which is outside the scope of this 

analysis). Figure 4 shows a simplified view of the common 

elements of the architecture, with the Compute block acting 

as a placeholder for the various compute options under 

consideration.  

Comparison of compute options  

We now consider the practical implications of “filling” the 

compute block using each of the AWS-based options    

we identified in the previous section. For each option we  

estimate fixed and variable cloud cost estimates (Table 1) 

based on AWS North Virginia pricing, and consider the 

relationship between cost and demand. We also compare 

operational overheads in each case.   

Figure 4 – PPV Purchase API  

In Option 1 (EC2 fixed capacity) we provision capacity to meet peak demand at all times, 

including redundant capacity to meet availability targets. If we assume that capacity will be 

spread across three AZs, and that we should tolerate a loss of one AZ, then each AZ 

should have enough capacity to take 50% of the total peak load i.e. 2,000 tps. We also 

allow for some margin of safety in the event that demand exceeds the forecast estimate.  

Further design considerations here include selection of EC2 instance type/size to use4, the 

number of instances per AZ, and the type and amount of disk storage required. These 

would ideally be optimised through repeated experimentation and fine tuning. For this 

example we assume (based on knowledge from similar use cases) that a single t2.xlarge 

with 300GB general purpose SSD will be used in each AZ. Finally an Elastic Load 

Balancer would be required to distribute load across the three AZs.  

                                            
4 AWS provides a range of instance families optimised for different use cases.  



         

In addition to cloud charges, there are server maintenance overheads e.g. applying 

patches to OS and software, restarting hosts that have been degraded etc. It is also 

necessary to monitor utilisation over 

time, and to regularly re-assess the   

instance type and configuration; in the 

event that demand exceeds capacity 

then excess requests will not be 

serviced, whilst conversely excess 

capacity is still chargeable.  

Table 1 – PPV Cost Estimate Comparison  

With Option 2 (EC2 + autoscaling) we still need to allow for loss of an AZ, but do not 

need to provision full capacity up front. Rather we start with a minimal configuration to 

handle off-peak load and then use an auto-scaling policy (based on a suitable utilisation 

metric) to add instances as demand increases. Moreover the upper capacity limit can be 

set higher than forecast demand to accommodate unforeseen excess demand.  

Again design choices need to be made in relation to instance type and auto-scaling policy 

configuration. One immediate problem is that, for most AWS instance families, the smallest 

instance type is actually quite large! The only family with smaller instance types is the “t2” 

burstable family. These need time to accumulate CPU credits before they can burst to 

support higher loads (or can be set up to burst-on-demand, but with higher charges) – 

which is not a good fit with auto-scaling adding fresh instances!  

One option here is to create a mix of instance types in two separate auto-scaling groups 

under a common load balancer. For this exercise we assume a setup in which there is 

always one t2.medium per AZ to cater for off-peak load, and then add m5.large instances 

(in groups of three to maintain HA) as demand ramps up. Similar operational overheads as 

for option 1 apply.  

Perhaps surprisingly the variable cost element here is still quite small. The reason for this 

is that scaling out is only required for a few hours per event, with the system running at 

baseline configuration for more than 99% of the time overall. The main benefit that 

autoscaling brings to this case is simply a reduction of the baseline fixed cost5.  

With Option 3 (Fargate) we are no longer concerned with instance types, and only need to 

specify how much vCPU and memory to allocate to the task that will host our container. 

We also need to configure task placement and scaling policies to scale in/out the number 

of containers across multiple AZs as demand varies. The granularity of resource 

adaptation is much finer than for EC2, and timeliness of adaptation is better. This enables 

us to use an even lower baseline configuration, resulting in a more significant variable 

element. Operational overhead is lower because there is no need to patch servers or 

replace AMIs.  

Finally, with Option 4 (Lambda) we simply deploy the function code for our Purchase API, 

specifying a memory size as the only parameter. Lambda automatically takes care of 

spreading load across multiple AZs, and scaling underlying capacity as required. Based on 

                                            
5 It should be emphasised that this result is specific to the PPV use case under consideration. The variable 

cost element of auto-scaling could be more significant in other use cases.  

  EC2 fixed  Autoscale  Fargate  Lambda  

Fixed  $6,200  $2,550  $1,330  $0  

Variable   Negligible  < $50  $370  $35  



         

experimentation we have ascertained that, with a 1GB memory allocation, the function 

would execute in under 200ms in the vast majority of cases. At the time of writing, Lambda 

is priced at $0.20 per million calls plus $0.00001667 per GB-second, giving rise to a total 

cost estimate of just $35 which is entirely linearly proportional to demand.  

In this example we assumed that the use of three AZs within a single region provided 

sufficient redundancy to deliver the required availability. If required, even higher availability 

can be achieved using multiple regions. Whilst this adds complexity from a data 

consistency perspective, it is worth noting that from a compute perspective Lambda would 

add minimal cost, because all of the cost is variable and linked to actual execution time. In 

contrast server-based solution costs would double for an active-active setup.  

CONCLUSION  

We have seen how Serverless reduces cloud costs in extreme peak-to-trough demand 

cases, eliminates overheads associated with managing servers, and makes it easier to 

maintain high scalability and availability. We have also highlighted some TV application 

areas that can benefit, and illustrated the potential of Serverless using a PPV case.  

Given the benefits, it is tempting to argue for use of Serverless in any situation. However, 

high elasticity does not always translate into lowest cost. The PPV case, while reflective of 

a real situation, was deliberately chosen to demonstrate the effectiveness of Serverless 

with extreme peak-trough demand profiles. But applications that consistently place an 

even load on resources (with little or no idle time) are probably better off with less elastic 

services because the unit price per resource/time is typically lower. Rather than adopt a 

Serverless-first approach, it is therefore better to consider each use case on its own 

merits. A simple cost model will often suffice to make this judgment call.  

Another consideration is that Serverless solutions are not infinitely scalable. There may be 

limits on how far they can scale out, or the rate at which they can scale out. In this respect 

it would be useful if cloud providers enabled operators to reserve capacity in advance of an 

anticipated spike. An interesting (if complex) alternative might be hybrid deployment, 

wherein a solution could switch between Serverless functions and containers to handle 

significant shifts in demand profile. This could help to overcome any Serverless capacity 

limits whilst achieving better cost optimisation for sustained peak loads.  

A potential limitation for some cases is that Serverless implementation constraints can 

reduce flexibility for engineers e.g. Lambda only supports specific versions of a number of 

programming languages, and limits the time available for the function to execute.  

For new operators, Serverless helps to lower barriers to entry by eliminating the need for 

upfront capital, and linking cost to actual service consumption. It also enables engineers to 

focus more time on core business problems. We have focussed primarily on compute in 

this paper, but the opportunities are much broader e.g. Serverless transcoding is billed on 

length of jobs as opposed to servers, databases are billed on storage and throughput etc. 

See Sbarski (4) for an example of how a start-up used Serverless to build a video-based 

learning business.  

For existing operators, Serverless can lower costs and overheads significantly, but only if 

existing services are re-architected to benefit. A simple lift-and-shift approach for migration 



         

to the cloud will not suffice. This means that deployment design needs to be factored in 

early, and that cloud skills are needed across all functions.  
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