

EFFICIENT MULTI-BITRATE HEVC ENCODING FOR

ADAPTIVE STREAMING

Deepthi Nandakumar, Sagar Kotecha, Kavitha Sampath,
Pradeep Ramachandran, Tom Vaughan

MulticoreWare Inc.

ABSTRACT
Adaptive bitrate streaming is a critical feature in internet video that
significantly improves the viewer experience by customizing video stream
quality to the viewer device's capability and connectivity. Encoding the
source content at multiple quality tiers or bitrates is extremely demanding
for post-production houses, studios, and content delivery networks. This
paper describes an intelligent multi-bitrate encoder, based on the High
Efficiency Video Coding (HEVC)/H.265 standard that encodes a single title
to multiple bitrates at significant performance gains and no compression
efficiency loss, as compared to standalone single bitrate encoder instances.

We first describe the threading infrastructure of x265, and demonstrate its
ability to dynamically adapt to varying degrees of parallelism in hardware.
We then describe the key architectural design of a multi-bitrate encoder,
including thread synchronization challenges across encoder instances. We
also discuss the analysis data shared across different quality tiers, that is
carefully chosen to eliminate loss of compression efficiency compared to a
single bitrate encoder instance. Finally, we show the high performance
gains achieved by the multi-encoder, and demonstrate the feasibility of
simultaneous encoding to multiple bitrates with negligible loss of
compression efficiency.

INTRODUCTION
Over-The-Top (OTT) content streaming is poised to grow exponentially in the coming years,
driven by the consumer’s need for a rich and high quality viewing experience. Recent
projections indicate that Internet delivery of video will consume 80 to 90% of all Internet
bandwidth by the year 2019 [1] [2].
Consequently, video streaming over the Internet has evolved tremendously over the past
several years including advances in compression, and transmission technology. The
Advanced Video Coding (AVC) standard has been the de-facto compression standard for
some years now. The recently-proposed High Efficiency Video Coding (HEVC) standard
was developed by the Joint Collaborative Group for Video Coding (JCT-VC) with the goal of
achieving the same quality as that achieved by the AVC standard at 50% the bit-rate. Studies
have verified this improvement in encoding efficiency can be realized at typical consumer
video distribution quality levels [3]. In this paper, we explore using the HEVC standard to

enable OTT content streaming while ensuring a significantly improved viewer experience.
Since encoding for the HEVC standard is expected to be 5-10X computationally more
intensive than AVC, we discuss critical aspects related to improving encoder performance.
HEVC codec solutions play a key role in enabling OTT content streaming by significantly
reducing the bitrate required for defined visual quality levels. In addition to efficient
compression of video, multimedia streaming over the internet has unique challenges that
need to be addressed. The open internet is by definition an “unmanaged” network where
end-user bandwidth for the OTT consumer cannot be guaranteed. Due to network
congestion at times of peak demand, frames could take longer to reach, thus causing the
playback to stall due to an empty buffer. A widely adopted technique to mitigate this is
adaptive streaming, where the bitrate of the delivered video is dynamically adapted to
changing network conditions. By encoding to multiple bitrates, and dynamically switching
between the bitrate tiers, streaming media servers adapt to changing network conditions,
significantly improving the viewer experience.
This discussion is guided by our experience developing x265 [4], an open-source software
HEVC encoder that was developed using the x264 AVC encoder project as a reference.
x265 is the world’s most widely adopted HEVC encoder and is integrated into popular media
processing applications and frameworks such as VLC, Handbrake, FFMPEG, and
gstreamer. In a recent comparison of HEVC encoders conducted by the video experts at
Moscow State University, x265 achieved the highest efficiency (the lowest bit rate at any
target quality level) of any HEVC encoder tested [5]. We also describe the UHDkit multi-
bitrate encoder that enables simultaneous and efficient encoding of multiple HEVC bit-
streams at different bitrate tiers from a single video source. The multi-bitrate encoder is
architected around x265, and shares analysis information from one bitrate instance to the
others to enable a significantly faster encode with every little impact to encoding efficiency.
Our results show that encoding to 4 bitrates with our multi-bitrate HEVC encoder results in
a 2.5X speed-up for1080p streams, and a 2.1X speed-up for 4K streams.

ENCODER PARALLELISM AND PERFORMANCE
HEVC encoding is, on average, 5X more complex than encoding for the AVC standard,
when targeting ultra-high definition (UHD) resolutions of 3840x2160 pixels for each frame.
This complexity is further increased with 10-bit pixels, as opposed to traditional 8-bit pixels.
In x265, the paradigm of parallelism is baked fundamentally into the encoder to achieve
high-performance. In this paper, we discuss the fundamental threading infrastructure in
x265. While some of the features of parallelism have no impact on encoding efficiency, we
also implement several features that trade-off encoding efficiency for heightened
performance. Interested readers are referred to a recent publication on x265 that discusses
the trade-offs between performance and efficiency in more detail [6].
Thread Categories in x265
x265 creates two main categories of threads that operate during the encoding process.
The first category are frame encoder threads that operate on multiple frames in parallel,
enabling inter-frame parallelism during HEVC encoding. However, since there may be cross-
frame dependencies for motion-compensated prediction, these frame encoder threads are
orchestrated such that these constraints are not broken. While frame parallelism enables

higher performance, it has an impact on the accuracy of rate prediction. This is because the
accuracy of the rate-control information passed from a previous frame to the current frame
is limited since the previous frame may be encoding in parallel with the current frame.
Frame-level parallelism should therefore be carefully orchestrated to balance the improved
performance with the impact to encoding efficiency.
Another category of threads are worker threads that are used to implement intra-frame
parallelism when encoding a given frame. The HEVC standard introduces Wavefront
Parallel Processing (WPP) as a key technique for parallel encoding and decoding. Through
WPP, multiple rows of CTUs (coding blocks introduced by HEVC) may be encoded or
decoded in parallel without significant impact on encode efficiency. The block-level
restrictions on motion prediction limits the parallelism that can be exposed via WPP.
The combination of frame encoder and worker threads enable inter and intra-frame
parallelism during HEVC encoding, resulting in close to optimum utilization on multi-core
and multi-socket architectures.
Software Thread Pools and Mapping to Hardware Threads
x265 utilizes the concept of “thread pools” to better manage the worker threads and their
mapping to hardware threads. A thread pool is a collection of worker threads whose affinity
is set to the processors on one NUMA node in a multi-socket server; if the system has only
one socket, the threads in a pool are associated with all the CPUs in the system by default.
x265 uses the NUMA API calls exposed by various operating systems to set the affinity of
the threads to the appropriate processors. By setting the affinity of these software threads
to a limited number of CPUs, the mapping of the software threads to their hardware counter-
parts ensures that there is limited movement of data between the caches, resulting in higher
performance. x265 also has the ability to create multiple pools of threads that may each be
restricted to one socket. Separating the worker threads in this fashion may result in limiting
the amount of cross-socket traffic in a multi-socket server, enabling higher performance.
Impact of threading on Hardware Utilization
The overall threading design enables x265 to seamlessly adapt and utilize the underlying
HW threads on any HW that it may execute on for HEVC encoding. Error! Reference
source not found. shows how a 4k x265 encode for a typical ripping setting adapts itself to
the varying number of hardware threads on three different systems, an i5-4500U mobile
processor, i7-6700K (Skylake) desktop processor and a dual-socket E5-2666 v3 (Haswell)
server. On the mobile and desktop systems, x265 is able to max out all available hardware
threads due to its intelligent threading infrastructure. x265 however, saturates at around 24
threads on the server system due to fundamental limitations in the amount of parallelism
that can be achieved with a single stream HEVC encode. Our work on the UHDkit multi-
bitrate encoder discusses techniques to encode multiple parallel streams to overcome these
bottle-necks and to achieve higher utilization and higher performance [7].

ADAPTIVE STREAMING
TECHNIQUES
The prevalent form of web-based
media delivery using HTTP
progressive download suffered from
a serious drawback in that the
encoding technology was limited to
Constant Bitrate (CBR) or Variable
Bitrate (VBR). CBR required that the
number of bits per second of video
always remain a constant, for
simplified client playback. VBR was
a substantial improvement over
CBR, allowing for different sections
of the video to be encoded at
different bitrates based on frame
complexity. However, progressive

download had many drawbacks in terms of viewer experience, which included long start and
seek times and, more importantly, the stop-start buffering phenomenon, as the playback
client waited for its buffer to fill before playing it out.
Adaptive Bitrate (ABR) is designed to deliver the best streaming video quality, regardless of
content, client bandwidth or client device. ABR video streaming allows streamed video
quality to vary over the lifetime of a stream to match changing conditions on the network,
thus trading video quality for continuous playback. For ABR systems using HTTP with pre-
encoded content, the technology can be divided into 2 basic systems a) split the media file
into several consecutive segments, and encode each segment at multiple bitrates and b) a
monitoring system that determines network congestion and/or buffer capacity and requests
each chunk at the appropriate bitrate from the streaming server. In a congested network,
the streaming server sends smaller chunks from the lower bitrate tiers, to prevent the client
playback buffer from emptying, thus avoiding a playback interruption.
In most systems, adaptive streaming is controlled by the client playback systems. The client
initially receives a list of available bitrate tiers. The client will measure bandwidth and
dropped frames continually during playback, and react to screen-size changes. When the
server receives a request to change the bitrate, it will wait for the closest keyframe and
switch to the requested bitrate tier.
Encoding Considerations for Adaptive Streaming
The most important design choice in encoding for adaptive streaming is the number of
encoding tiers and the exact bitrate chosen for each encoding tier. The choice of bitrates will
be governed by the nature of content, the resolution and the targeted playback device list.
The larger the targeted range of devices and resolutions, the wider the number and range
of bitrates needs to be. It is also imperative that the bitrate tiers are as close together as
possible, so that switching across tiers does not cause noticeable fluctuations in quality. The
decoder buffer constraints can also play an important role in determining response to
bandwidth fluctuations.

Figure 1: x265 dynamically adapts s/w threading levels
to different machine configurations

Another important encoding consideration is the need for keyframes as synchronization
points, where the streaming media server can switch to a different bitrate tier. For successful
switching between bitrate tiers, it is necessary that open-GOP encoding is disabled. This
prevents dependencies between frames following the keyframe and frames preceding the
keyframe. The interval between keyframes plays a very important role in controlling
streaming quality. Too many keyframes, and the overhead of increased bits is too large. Too
few keyframes, and the streaming media server cannot respond fast enough to changing
bandwidth conditions. A keyframe interval of 1-5 seconds is typically used in most streaming
applications.

MULTI-BITRATE ENCODER ARCHITECTURE
The UHDkit multi-encoder, based on the open-source x265 HEVC encoder, enables efficient
accelerated encoding of a single title to multiple bitrates for adaptive streaming. Encoding
to multiple bitrates within a single application dramatically saves CPU cycles, thus enabling
delivery to streaming formats like MPEG-DASH and HLS in less time or with less hardware.
The multi-encoder maintains encode efficiency by sharing cached analysis data across all
bitrate instances. The highest bitrate instance, and therefore the one with the best visual
quality, is referred to as the master encoder, and the other instances are referred to as slave
encoders. The multiple encoders are synchronized such that the slave encoders start
encoding a frame only after the master encoder has completed that frame encode. This
prevents data races and ensures all the shared structures are available to the slave
instances.

Figure 2: UHDkit multi-bitrate HEVC encoder top-level architecture
The x265 HEVC encoder implements an important module called lookahead, which
performs pre-analysis of input frames to make several key decisions such as slicetype
decision and adaptive quantization. As the UHDkit multi-encoder shares input frames
across all encoder instances, lookahead pre-processing is also shared across all encoder
instances and is managed on a separate thread. This is crucial for adaptive bitrate

streaming, as each of the encoder instances must share keyframes at synchronization
points. Adaptive quantization is another encode feature that is implemented in the lookahead
and shared across all encoder instances. The encoder assigns QP offsets to blocks
depending on source picture complexity. The basic ratecontrol feature is a key differentiating
module across the multiple encoder instances, since their target bitrates and hence, base
frame QPs, will be significantly different. The QP offsets are then applied over the base
frame QPs.
The shared data structures are of 2 categories, intra-frame data and inter-frame data. Intra-
frame data includes information about the CU partition size and the luma and chroma intra
mode that was chosen by the master encoder. Inter-frame data includes information about
the CU partition size, reference frame and motion vector that was chosen by the master
encoder. For a weighted inter-frames, this also includes weighting parameters. The slave
encoders further refine the mode and motion vectors to choose the best encode settings for
the determined block QP. For the slave encode instance, the ability to refine key encode
parameters prevents any drop in efficiency, but provides significant savings in CPU cycles.

RESULTS
Most encoder performance gains are a major encode efficiency trade off, in that large
performance gains from algorithmic improvements typically cause a significant drop in
encode efficiency and vice versa. With our carefully designed architecture, the UHDkit multi-
bitrate encoder achieves substantial performance gains with little to no drop in efficiency.
Figure 3 shows the time taken to encode a single input stream to 4 output streams at
different bitrates using the UHDkit multi-bitrate encoder application. The reported time is an
average of the time taken to encode three 1080p and three 4k streams and the average time
taken plotted. This is compared to independent x265 encodes, which generates a single
output stream at a time. On average, the simultaneous multi-bitrate encoder achieves 2.5X
speedup for 1080p streams, and 2.1X speedup for 4k streams.

Figure 3: Encode time reduction from a 4 instance multi-bitrate encoder compared to a single
instance x265 (encoding to 4 bitrates sequentially). The measurements were done on an E5-
2699 v3 (18cores/socket)

Figure 4 compares the encode efficiency of the UHDkit multi-bitrate encoder, represented
by BD-SSIM, using independent x265 encodes as the reference. As expected, the UHDkit
multi-bitrate encoder shows a slight drop in efficiency particularly for the slave encoders,
since certain modes and partition sizes are eliminated from evaluation based on the master
encoder’s CU decisions. However, the average BD-SSIM drop is contained at 0.04 dB for
1080p videos and at 0.06 dB for 4k videos. This translates to almost no difference in visual
quality across the UHDkit multi-bitrate encoder and independent x265 encodes.

Figure 4: Averaged BD-SSIM of the UHDkit multi-bitrate encoder compared against
independent x265 encodes.

CONCLUSION AND FUTURE WORK
In this paper, we described the parallelization challenges within the framework of the widely
used HEVC open-source encoder x265, and how the threading design of x265 dynamically
adapts to the target hardware architecture. We also described our work on the widely used
HEVC open-source encoder x265, and how UHDkit, a multi-bitrate encoder based on x265
enables efficient adaptive streaming of OTT content. A possible future extension of this work
includes enabling encoding to multiple resolutions, in addition to multiple bitrates.
As adoption of HEVC ramps up, we continue to explore new algorithms to achieve more
efficient video encoding and higher performance. These include more efficient sharing of
inter-frame motion structures and the ability to refine shared data across encoder instances.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2014-2019 White
Paper,” Cisco, 2014. [Online]. Available:
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-
generation-network/white_paper_c11-481360.html.

[2] Sandvine, “Global Internet Phenomena Report,” 2014. [Online]. Available:
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-
2014-global-internet-phenomena-report.pdf.

[3] BBC, “H.265/HEVC vs H.265/AVC 50% Bit-rate Savings Verified,” BBC, 2016.

[Online]. Available: http://www.bbc.co.uk/rd/blog/2016-01-h-dot-265-slash-hevc-vs-h-
dot-264-slash-avc-50-percent-bit-rate-savings-verified.

[4] Multicoreware, “x265 - An Open-Source HEVC Encoder,” Multicoreware Inc, 2013.
[Online]. Available: http://x265.org.

[5] MSU, “HEVC Video Codecs Comparison,” Moscow State University, 2015. [Online].
Available: http://compression.ru/video/codec_comparison/hevc_2015/.

[6] T. Vaughan, D. Nandakumar, P. Ramachandran and J. Ramachandran, “Efficiency vs
Performance Trade-offs in the Design of an HEVC Encoder,” in National Association of
Broadcasters Conference, Las Vegas, 2016.

[7] Multicoreware Inc, “MulticoreWare Announces UHDkit Advanced HEVC Video
Encoding Library, powered by x265,” 2016. [Online]. Available:
http://www.prnewswire.com/news-releases/multicoreware-announces-uhdkit-
advanced-hevc-video-encoding-library-powered-by-x265-300252630.html.

